
1/43

Rearchitecting Kubernetes for the Edge
And the DC too!

Andrew Jeffery
andrew.jeffery@cl.cam.ac.uk

University of Cambridge

Thursday 11th March, 2021

andrew.jeffery@cl.cam.ac.uk


2/43

About Me

▶ First year PhD student under Prof. Mortier
▶ BA in Computer Science from University of Cambridge
▶ Previously worked at The Hut Group



3/43

Work in Progress
Currently under submission to EdgeSys ’21



4/43

One thing to take away

Orchestration should not require strong consistency!



5/43

What we’ll cover

The problem of strong consistency in orchestration

Some edge case studies

How does strong consistency impact Kubernetes

Analysing etcd at scale

Using CRDTs for eventual consistency

Implications on deployment architectures

Looking back at the cloud, have we missed something?

Key Takeaway
Orchestration should not require strong consistency



6/43

Where are we up to?

The problem of strong consistency in orchestration

Some edge case studies

How does strong consistency impact Kubernetes

Analysing etcd at scale

Using CRDTs for eventual consistency

Implications on deployment architectures

Looking back at the cloud, have we missed something?

Key Takeaway
Orchestration should not require strong consistency



7/43

What is the problem?

Our services running at the edge should be:
▶ Performant
▶ Available
▶ Scalable

But they aren’t there yet...



8/43

Why is it important?

Removes our ability to react!
▶ To failures
▶ To changes in demand
▶ To reconfigurations



9/43

Where are we up to?

The problem of strong consistency in orchestration

Some edge case studies

How does strong consistency impact Kubernetes

Analysing etcd at scale

Using CRDTs for eventual consistency

Implications on deployment architectures

Looking back at the cloud, have we missed something?

Key Takeaway
Orchestration should not require strong consistency



10/43

What do we mean by the edge?

Compared to a datacenter the edge has:
▶ Lots more sites, each being closer to end users
▶ Higher network latencies between sites and internally
▶ Lower bandwidth between sites and internally
▶ Less reliable components



11/43

Actual deployment case studies

Scale of communication is always increasing. Technology enables
faster communication with more devices and more dynamic
content:
▶ Next generation(s) of connectivity: 5G
▶ More devices: IoT
▶ Dynamic content: Elastic CDNs



12/43

Where are we up to?

The problem of strong consistency in orchestration

Some edge case studies

How does strong consistency impact Kubernetes

Analysing etcd at scale

Using CRDTs for eventual consistency

Implications on deployment architectures

Looking back at the cloud, have we missed something?

Key Takeaway
Orchestration should not require strong consistency



13/43

What is Kubernetes?

Production-Grade Container Orchestration1

▶ Scaling
▶ Healing
▶ Routing
▶ Extensibility

59 percent of large organizations use Kubernetes in production2

1https://kubernetes.io/
2https://tanzu.vmware.com/content/blog/why-large-organizations-trust-

kubernetes



14/43

Kubernetes Architecture

Etcd node 1
(leader)

Etcd node 2 Etcd node 3

API server

Replicaset
controller Scheduler

Custom controllers

Worker node



15/43

Etcd

A distributed, reliable key-value store for the most critical
data of a distributed system3

▶ Critical data here is Kubernetes state
▶ Supports transactions on data
▶ Also has concept of watches: notifications of changes

3https://etcd.io/



16/43

Scheduling with centralised state

Etcd node 1
(leader)

Etcd node 2 Etcd node 3

API server

Replicaset
controller Scheduler Worker node

Container
registryCustom controllers

2 3 7 8 12

13

14

⋆

4, 9, 15, ⋆1, 6, 11, ⋆

5, 10, 16, ⋆ 5, 10, 16, ⋆



17/43

Key limitation

Centralised, strongly consistent state

Key Takeaway
Orchestration should not require strong consistency



18/43

Where are we up to?

The problem of strong consistency in orchestration

Some edge case studies

How does strong consistency impact Kubernetes

Analysing etcd at scale

Using CRDTs for eventual consistency

Implications on deployment architectures

Looking back at the cloud, have we missed something?

Key Takeaway
Orchestration should not require strong consistency



19/43

Results of Etcd: Request breakdown

Request type Count Percentage
Range 1542 52.3
Txn Range 476 16.1
Txn Put 866 29.3
Watch create 67 2.3
Total 2951 100

Table: Etcd request counts averaged over 10 runs. Series of creating a
deployment of 3 containers, scaling to 10, scaling to 5 and then deleting.
Range requests are all linearisable. Requests with negligible count are
omitted.



20/43

Results of Etcd: Latency

3 5 7 9 11 13 15 17 19 21
Cluster node count

0

100

200

300

400

500

M
ed

ia
n 

la
te

nc
y 

(m
s)

put
range_l



21/43

Results of Etcd: Throughput

3 5 7 9 11 13 15 17 19 21
Cluster node count

5

10

15

20

25

30

Re
qu

es
ts

 p
er

 se
co

nd
 (t

ho
us

an
ds

)

put
range_l



22/43

Key limitation - Etcd

Centralised, strongly consistent state
This is all etcd

Key Takeaway
Orchestration should not require strong consistency



23/43

Where are we up to?

The problem of strong consistency in orchestration

Some edge case studies

How does strong consistency impact Kubernetes

Analysing etcd at scale

Using CRDTs for eventual consistency

Implications on deployment architectures

Looking back at the cloud, have we missed something?

Key Takeaway
Orchestration should not require strong consistency



24/43

Key limitations revisited

Decentralised, eventually consistent state

Key Takeaway
Orchestration should not require strong consistency



25/43

Changing the datastore

▶ We don’t want to change all of Kubernetes, that would be too
much work

▶ We also want to use a strong mechanism for eventual
consistency: Conflict-Free Replicated Datatypes (CRDTs)



26/43

What gets stored?

JSON-like Data!

a p i V e r s i o n : apps /v1
k ind : R e p l i c a S e t
metadata :

name : f r o n t e n d
spec :

r e p l i c a s : 3
s e l e c t o r :

matchLabe l s :
t i e r : f r o n t e n d

temp la t e :
metadata :

l a b e l s :
t i e r : f r o n t e n d

spec :
c o n t a i n e r s :
− name : ng inx

image : ng inx



27/43

How out of date will this get?

Assuming we don’t want our state to be stale...

But maybe we can use staleness to our advantage?



28/43

Can Kubernetes even handle stale state?

Distributed systems are dynamic environments and at best we can
only model them.

So does Kubernetes already act on stale information?



29/43

Stale state: Services

A B

DNS

▶ DNS could resolve to IP address which matches a dead
container

▶ So, this could already be an issue



30/43

Stale state: ReplicaSets

A B1 C D2

▶ Under failures we could schedule more, as well as less
▶ So, again, this could already be an issue in our distributed

system
▶ With CRDTs we can control over-replication rather than

under-replication on merge



31/43

Scheduling with the decentralised state

Datastore node 1

Datastore node 2 Datastore node 3· · ·

API server

Replicaset
controller Scheduler Worker node

Container
registryCustom controllers

2 3 6 7 10

11

12

⋆

4, 8, 13, ⋆1, 5, 9, ⋆

lazy syncing lazy syncing

Saved at least 3 critical path network hops!



32/43

Where are we up to?

The problem of strong consistency in orchestration

Some edge case studies

How does strong consistency impact Kubernetes

Analysing etcd at scale

Using CRDTs for eventual consistency

Implications on deployment architectures

Looking back at the cloud, have we missed something?

Key Takeaway
Orchestration should not require strong consistency



33/43

Current edge architectures: Split DC and Edge

etcd control-plane Cloud

worker nodes Edge



34/43

Current edge architectures: All Edge

Cloud

worker nodescontrol-planeetcd Edge



35/43

Rearchitect with eventual consistency?

Our new datastore gives us more flexibility
▶ We can now scale across multiple edge sites
▶ We can run on slower links and still be efficient
▶ We can use fewer resources and maintain the same fault

tolerance



36/43

Where are we up to?

The problem of strong consistency in orchestration

Some edge case studies

How does strong consistency impact Kubernetes

Analysing etcd at scale

Using CRDTs for eventual consistency

Implications on deployment architectures

Looking back at the cloud, have we missed something?

Key Takeaway
Orchestration should not require strong consistency



37/43

What if we look back to the cloud?

Not everything will be running at the edge so maybe we can
influence cloud deployments too?



38/43

Spreading out for availability

A

B C

X

X

=⇒
A

B C

X

X



39/43

What we’ve covered

The problem of strong consistency in orchestration

Some edge case studies

How does strong consistency impact Kubernetes

Analysing etcd at scale

Using CRDTs for eventual consistency

Implications on deployment architectures

Looking back at the cloud, have we missed something?

Key Takeaway
Orchestration should not require strong consistency



40/43

Conclusion

Orchestration should not require strong consistency

By adhering to this we can
▶ Improve performance of our clusters and make them more

reactive
▶ Make them more tolerant to failure
▶ Scale them across more sites without fear

Andrew Jeffery
andrew.jeffery@cl.cam.ac.uk

andrew.jeffery@cl.cam.ac.uk


41/43

Bonus: Federation

▶ Rather than looking inside a cluster we can look between
▶ No room, run jobs in other cluster instead
▶ Kubernetes still wants strong consistency on this!
▶ Some researchers have a similar idea of using eventual

consistency instead



42/43

Bonus: New system

▶ We could just create a new system from scratch
▶ But why waste the effort, adoption is hard enough for

production systems
▶ Kubernetes is the industry standard now, easier to try things

out and then maybe we can build afresh



43/43

Bonus: Adaptive consistency

▶ A useful option if some parts of state require more consistency
▶ Could also use etcd for less critical state and eventual

consistency for high traffic items


	The problem of strong consistency in orchestration
	Some edge case studies
	How does strong consistency impact Kubernetes
	Analysing etcd at scale
	Using CRDTs for eventual consistency
	Implications on deployment architectures
	Looking back at the cloud, have we missed something?

