
1/15

Rearchitecting Kubernetes for the Edge
EdgeSys ’21

Andrew Jeffery
andrew.jeffery@cl.cam.ac.uk

Heidi Howard
heidi.howard@cl.cam.ac.uk

Richard Mortier
richard.mortier@cl.cam.ac.uk

University of Cambridge

Monday 26th April, 2021

mailto:andrew.jeffery@cl.cam.ac.uk
mailto:heidi.howard@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk


2/15

One thing to take away

Orchestration should not require strong consistency!



3/15

Actual deployment case studies

Scale of communication is always increasing. Technology enables
faster communication with more devices and more dynamic
content:
▶ Next generation(s) of connectivity: 5G
▶ More devices: IoT
▶ Dynamic content: Elastic CDNs



4/15

What is Kubernetes?

Production-Grade Container Orchestration1

▶ Scaling
▶ Healing
▶ Routing
▶ Extensibility

59 percent of large organizations use Kubernetes in production2

1https://kubernetes.io/
2https://tanzu.vmware.com/content/blog/why-large-organizations-trust-

kubernetes



5/15

What is Etcd?

A distributed, reliable key-value store for the most critical
data of a distributed system3

▶ Critical data here is Kubernetes state
▶ Supports transactions on data
▶ Also has concept of watches: notifications of changes

3https://etcd.io/



6/15

Scheduling with centralised state

Etcd node 1
(leader)

Etcd node 2 Etcd node 3

API server

Replicaset
controller Scheduler Worker node

Container
registryCustom controllers

2 3 7 8 12

13

14

⋆

4, 9, 15, ⋆1, 6, 11, ⋆

5, 10, 16, ⋆ 5, 10, 16, ⋆



7/15

Key limitation - Etcd

Centralised, strongly consistent state
This is all etcd

Key Takeaway
Orchestration should not require strong consistency



8/15

Key limitations revisited

Decentralised, eventually consistent state

Key Takeaway
Orchestration should not require strong consistency



9/15

What gets stored?

JSON-like Data!
We can use CRDTs for this

a p i V e r s i o n : apps /v1
k ind : R e p l i c a S e t
metadata :

name : f r o n t e n d
spec :

r e p l i c a s : 3
s e l e c t o r :

matchLabe l s :
t i e r : f r o n t e n d

temp la t e :
metadata :

l a b e l s :
t i e r : f r o n t e n d

spec :
c o n t a i n e r s :
− name : ng inx

image : ng inx



10/15

Dealing with stale data

Assuming we don’t want our state to be stale...

But maybe we can use staleness to our advantage?

It is a dynamic environment and at best we can only model it so
Kubernetes likely already acts on stale information



11/15

Stale state: Services

A B

DNS

▶ A wants to send to B but must first resolve the DNS name
▶ DNS could resolve to IP address which matches a dead

container
▶ So, this could already be an issue



12/15

Stale state: ReplicaSets

A B1 C D2

▶ Initially A, B and C are running, then B fails causing D to be
created

▶ Under failures we can have more scheduled than we’d expect
▶ So, again, this could already be an issue in our distributed

system
▶ With CRDTs we can control over-replication rather than

under-replication on merge



13/15

Scheduling with the decentralised state

Datastore node 1

Datastore node 2 Datastore node 3· · ·

API server

Replicaset
controller Scheduler Worker node

Container
registryCustom controllers

2 3 6 7 10

11

12

⋆

4, 8, 13, ⋆1, 5, 9, ⋆

lazy syncing lazy syncing

Saved at least 3 critical path network hops!



14/15

Rearchitect with eventual consistency?

Our new datastore gives us more flexibility
▶ We can now scale across multiple edge sites
▶ We can run on slower links and still be efficient
▶ We can use fewer resources and maintain the same fault

tolerance



15/15

Conclusion

Orchestration should not require strong consistency

By adhering to this we can
▶ Improve performance and reactivity of our clusters
▶ Make them more tolerant to failure
▶ Scale them across more sites without fear

Implementation is in progress and we welcome comments,
suggestions and collaborations.

Andrew Jeffery
andrew.jeffery@cl.cam.ac.uk

mailto:andrew.jeffery@cl.cam.ac.uk

