Rearchitecting Kubernetes for the Edge
EdgeSys '21

Andrew Jeffery Heidi Howard
andrew.jeffery@cl.cam.ac.uk heidi.howard@cl.cam.ac.uk

Richard Mortier
richard.mortier@cl.cam.ac.uk

University of Cambridge

Monday 26" April, 2021


mailto:andrew.jeffery@cl.cam.ac.uk
mailto:heidi.howard@cl.cam.ac.uk
mailto:richard.mortier@cl.cam.ac.uk

One thing to take away

Orchestration should not require strong consistency!



Actual deployment case studies

Scale of communication is always increasing. Technology enables
faster communication with more devices and more dynamic
content:

» Next generation(s) of connectivity: 5G
» More devices: loT
» Dynamic content: Elastic CDNs



What is Kubernetes?

Production-Grade Container Orchestration!

» Scaling
» Healing
» Routing
» Extensibility

59 percent of large organizations use Kubernetes in production?

https://kubernetes.io/

2https://tanzu.vmware.com/content/blog/why-large-organizations-trust-
kubernetes



What is Etcd?

A distributed, reliable key-value store for the most critical
data of a distributed system®

» Critical data here is Kubernetes state
» Supports transactions on data

» Also has concept of watches: notifications of changes

3https://etcd.io/



Scheduling with centralised state

Container
‘ Custom controllers ‘ registry

API server

Replicaset
controller
glo
|

\1, 6‘(, 11,*\ \4, 9, 35,*\
¥

Etcd node 1

(leader)

~

5,10, 16, *
Etcd node 3

v

Etcd node 2



Key limitation - Etcd

Centralised, strongly consistent state
This is all etcd

CYRELCEEN
Orchestration should not require strong consistency



Key limitations revisited

Decentralised, eventually consistent state

Orchestration should not require strong consistency




What gets stored?

JSON-like Data!
We can use CRDTs for this

apiVersion: apps/vl
kind: ReplicaSet

metadata:
name: frontend
spec:
replicas: 3
selector:

matchlLabels:
tier: frontend
template:
metadata:
labels:
tier: frontend
spec:
containers:
— name: nginx
image: nginx



Dealing with stale data

Assuming we don’'t want our state to be stale...

But maybe we can use staleness to our advantage?

It is a dynamic environment and at best we can only model it so
Kubernetes likely already acts on stale information



Stale state: Services

DNS

A——{B]

» A wants to send to B but must first resolve the DNS name

» DNS could resolve to IP address which matches a dead
container

» So, this could already be an issue



Stale state: ReplicaSets

(Al ' [B]] <] 2 [p]

» Initially A, B and C are running, then B fails causing D to be
created

» Under failures we can have more scheduled than we'd expect
» So, again, this could already be an issue in our distributed
system

> With CRDTs we can control over-replication rather than
under-replication on merge



Scheduling with the decentralised state

Container
‘ Custom controllers ‘ registry

Replicaset
controller

‘ API server

\1,39,*\ ‘4,8,113,*‘

’ Datastore node 1 ‘

- , ‘ -~
lazy syncing lazy syncing
A~ A
Datastore node 2 ‘ ’ Datastore node 3

Saved at least 3 critical path network hops!



Rearchitect with eventual consistency?

Our new datastore gives us more flexibility
> We can now scale across multiple edge sites
» We can run on slower links and still be efficient

» We can use fewer resources and maintain the same fault
tolerance



Conclusion

Orchestration should not require strong consistency

By adhering to this we can
» Improve performance and reactivity of our clusters
» Make them more tolerant to failure
» Scale them across more sites without fear

Implementation is in progress and we welcome comments,
suggestions and collaborations.

Andrew Jeffery
andrew.jeffery@cl.cam.ac.uk


mailto:andrew.jeffery@cl.cam.ac.uk

