
Modelling orchestration

Andrew Jeffery, supervised by Prof. Richard Mortier 24th October 2024 @SRG

1

What is model checking?

𝑠0

𝑠1 𝑠2

𝑠3 𝑠4 𝑠5

𝑠′0

andrew.jeffery@cst.cam.ac.uk 2

mailto:andrew.jeffery@cst.cam.ac.uk

Model checkers

Stateright Shuttle TLA+ (TLC)

andrew.jeffery@cst.cam.ac.uk 3

mailto:andrew.jeffery@cst.cam.ac.uk

What is orchestration?

The automated management of a system

andrew.jeffery@cst.cam.ac.uk 4

mailto:andrew.jeffery@cst.cam.ac.uk

Orchestrators

Kubernetes Mesos

andrew.jeffery@cst.cam.ac.uk 5

mailto:andrew.jeffery@cst.cam.ac.uk

Deployment environments

Environment Private datacenter Public Cloud
Near-edge (AWS

Wavelength)
(r5.2xlarge)

vCPUs 192 / 120 (/socket) 192 8
Memory ? 768 GiB 64 GiB
Disk Capacity ? Elastic Elastic
Disk Bandwidth ? 50 Gbps <4.75 Gpbs

LAN Latency (RTT) <1ms
0.3ms (Between

AWS AZs)
<1ms

LAN Bandwidth ? 50 Gbps <10 Gbps
Comparison of maximum likely resources per machine in each environment.

andrew.jeffery@cst.cam.ac.uk 6

mailto:andrew.jeffery@cst.cam.ac.uk

Kubernetes architecture

etcd node 1etcd node 2 etcd node 3

API server

ReplicaSet controller Scheduler Kubelet

Flow of requests to schedule a application instance from creation in etcd.

andrew.jeffery@cst.cam.ac.uk 7

mailto:andrew.jeffery@cst.cam.ac.uk

Other orchestration platforms: Mesos

Mesos master
(Leader)

Mesos master
(Follower)

Mesos master
(Follower)

ZooKeeper
Hadoop

scheduler
MPI

scheduler

Mesos Agent
(worker)

Hadoop executor

Mesos Agent
(worker)

MPI executor

Mesos Agent
(worker)

Hadoop executor

MPI executor

andrew.jeffery@cst.cam.ac.uk 8

mailto:andrew.jeffery@cst.cam.ac.uk

Other orchestration platforms: Nomad

RPC RPC RPC

Forwarding

Replication Forwarding

Replication

Client
(Worker)

Client
(Worker)

Client
(Worker)

Server
(Follower)

Server
(Leader)

Server
(Follower)

andrew.jeffery@cst.cam.ac.uk 9

mailto:andrew.jeffery@cst.cam.ac.uk

Existing edge platforms

(a) All-cloud, K8s. (b) Multi-site, K8s. (c) Single-site, K3s.
(d) Cloud-centric,

KubeEdge.
Circles are control-plane and datastore nodes, squares are worker nodes.

andrew.jeffery@cst.cam.ac.uk 10

mailto:andrew.jeffery@cst.cam.ac.uk

What is a scheduler

scheduler : 𝑁 → 𝑝 → 𝑛 𝑛 ∈ 𝑁, 𝑝 ∈ 𝑃

Pod

Node 1 Node 2

andrew.jeffery@cst.cam.ac.uk 11

mailto:andrew.jeffery@cst.cam.ac.uk

Making it fault tolerant: part 1

scheduler : 𝑁 → 𝑝 → 𝑛 𝑛 ∈ 𝑁, 𝑝 ∈ 𝑃

Pod

Node 2

andrew.jeffery@cst.cam.ac.uk 12

mailto:andrew.jeffery@cst.cam.ac.uk

Making it fault tolerant: part 2

scheduler : 𝑁 → 𝑝 → 𝑛 𝑛 ∈ 𝑁, 𝑝 ∈ 𝑃

Pod

Node 2

andrew.jeffery@cst.cam.ac.uk 13

mailto:andrew.jeffery@cst.cam.ac.uk

Adding higher level control

controller : 𝑆 → 𝑆′

Scheduler ReplicaSets Deployments Jobs

Node 1 Node 2 Node 3 Node 4

Central state

andrew.jeffery@cst.cam.ac.uk 14

mailto:andrew.jeffery@cst.cam.ac.uk

What is the problem?

etcd node 1etcd node 2 etcd node 3

API server

ReplicaSet controller Scheduler Kubelet

Flow of requests to schedule a application instance from creation in etcd.

andrew.jeffery@cst.cam.ac.uk 15

mailto:andrew.jeffery@cst.cam.ac.uk

Defining orchestration

An orchestration platform is a system of controllers 𝑐 ∈ 𝐶 that operate on a state
𝑠 ∈ 𝑆, driving the current state of the system to match the desired state.

State-based form

Controller : 𝑠 → 𝑠′

Op-based form

Controller : 𝑠 → 𝑜 𝑠 ∈ 𝑆, 𝑜 ∈ 𝑂

Apply(𝑠, 𝑜) = 𝑠′

andrew.jeffery@cst.cam.ac.uk 16

mailto:andrew.jeffery@cst.cam.ac.uk

Statefulset background

StatefulSet

Pod 0 Pod 1 Pod 2

andrew.jeffery@cst.cam.ac.uk 17

mailto:andrew.jeffery@cst.cam.ac.uk

Example orchestration flow

Create Pod 0
Create Pod 0

Run Pod 0

State

StatefulSet Scheduler

Node 1 Node 2

Pod 0

andrew.jeffery@cst.cam.ac.uk 18

mailto:andrew.jeffery@cst.cam.ac.uk

Example orchestration flow

Delete Pod 0

Delete Pod 0

State

StatefulSet Scheduler

Node 1 Node 2

andrew.jeffery@cst.cam.ac.uk 19

mailto:andrew.jeffery@cst.cam.ac.uk

Example orchestration flow

Create Pod 0
Create Pod 0

Run Pod 0

State

StatefulSet Scheduler

Node 1 Node 2

Pod 0

andrew.jeffery@cst.cam.ac.uk 20

mailto:andrew.jeffery@cst.cam.ac.uk

Extracting the model

1. State
• which controllers are in our system? (Statefulset, Scheduler, Nodes)
• what is the state of resources? (Pod)

2. Operations
• Defined by controllers in the system
• Create Pod
• Run Pod
• Environmental
• Restart node

andrew.jeffery@cst.cam.ac.uk 21

mailto:andrew.jeffery@cst.cam.ac.uk

Building a concrete model

• Themelios is the concrete model
• Rust for model implementation
• Stateright for model checking

andrew.jeffery@cst.cam.ac.uk 22

mailto:andrew.jeffery@cst.cam.ac.uk

Controller definition

trait Controller {
 type Operation: Into<ControllerOperation>;

 type State;

 fn step(&self, global_state: &StateView,
 local_state: &mut Self::State)
 -> Option<Self::Operation>;
}

andrew.jeffery@cst.cam.ac.uk 23

mailto:andrew.jeffery@cst.cam.ac.uk

A sample property: unique names

Pods running on Nodes have unique names

andrew.jeffery@cst.cam.ac.uk 24

mailto:andrew.jeffery@cst.cam.ac.uk

And in the model checker

properties.add(Expectation::Always, "node: pods on nodes are unique",
 |model, state| {
 let mut node_pods = BTreeSet::new();
 for c in 0..model.controllers.len() {
 let cstate = state.get_controller(c);
 if let ControllerStates::Node(n) = cstate {
 for node in &n.running {
 if !node_pods.insert(node) {
 return false; // property failed
 } } } }
 true // property successful
 },
);

andrew.jeffery@cst.cam.ac.uk 25

mailto:andrew.jeffery@cst.cam.ac.uk

How can we execute the checker?

1

2 3

4 5 6

(a) Breadth-first search.

1

2 5

3 4 6

(b) Depth-first search.

1

2

 3

(c) Simulation search.
Traversal order of searches.

andrew.jeffery@cst.cam.ac.uk 26

mailto:andrew.jeffery@cst.cam.ac.uk

Exploring different consistency levels

• Synchronous, lock step everything
• Sessions for stale reads, writes still lock step
‣ Can be durable between sessions
‣ or not…

• Causal (see Dismerge)

andrew.jeffery@cst.cam.ac.uk 27

mailto:andrew.jeffery@cst.cam.ac.uk

Stale reads bug

Create Pod 0
Create Pod 0

Run Pod 0

State

StatefulSet Scheduler

Node 1 Node 2

Pod 0

andrew.jeffery@cst.cam.ac.uk 28

mailto:andrew.jeffery@cst.cam.ac.uk

Stale reads bug

Delete Pod 0

Delete Pod 0

State

StatefulSet Scheduler

Node 1 Node 2

andrew.jeffery@cst.cam.ac.uk 29

mailto:andrew.jeffery@cst.cam.ac.uk

Stale reads bug

Create Pod 0
Create Pod 0

Run Pod 0

State

StatefulSet Scheduler

Node 1 Node 2

Pod 0

andrew.jeffery@cst.cam.ac.uk 30

mailto:andrew.jeffery@cst.cam.ac.uk

Stale reads bug

Node restart

State

StatefulSet Scheduler

Node 1 Node 2

Pod 0

andrew.jeffery@cst.cam.ac.uk 31

mailto:andrew.jeffery@cst.cam.ac.uk

Stale reads bug

Stale state
Create Pod 0

State

StatefulSet Scheduler

Node 1 Node 2

Pod 0Pod 0

andrew.jeffery@cst.cam.ac.uk 32

mailto:andrew.jeffery@cst.cam.ac.uk

Performance: state generation

States generated per run.

andrew.jeffery@cst.cam.ac.uk 33

mailto:andrew.jeffery@cst.cam.ac.uk

Performance: state generation

States generated per run.

andrew.jeffery@cst.cam.ac.uk 34

mailto:andrew.jeffery@cst.cam.ac.uk

Performance: depth exploration

Distribution of depths covered.

andrew.jeffery@cst.cam.ac.uk 35

mailto:andrew.jeffery@cst.cam.ac.uk

Performance: depth exploration

Distribution of depths covered.

andrew.jeffery@cst.cam.ac.uk 36

mailto:andrew.jeffery@cst.cam.ac.uk

Using the consistency models

• Some controllers may need to be adapted
• Themelios provides a harness for finding broken properties
• It also provides a systematic way to check adaptations

andrew.jeffery@cst.cam.ac.uk 37

mailto:andrew.jeffery@cst.cam.ac.uk

Orchestration near the edge

Multi-site, K8s.

andrew.jeffery@cst.cam.ac.uk 38

mailto:andrew.jeffery@cst.cam.ac.uk

Availability of etcd

andrew.jeffery@cst.cam.ac.uk 39

mailto:andrew.jeffery@cst.cam.ac.uk

Addressing history

Etcd

1 2 3

Dismerge

abcd

beef

dead feeb

daed

andrew.jeffery@cst.cam.ac.uk 40

mailto:andrew.jeffery@cst.cam.ac.uk

Durability

Hash Node 1 Node 2 Node 3
abcd ✓ ✓ ✓
beef ✓
dead ✓ ✓

• Datastore nodes keep a note of whether peers are ahead, behind, or in sync with
themselves.

• This enables clients to query replication statuses of their changes.

andrew.jeffery@cst.cam.ac.uk 41

mailto:andrew.jeffery@cst.cam.ac.uk

Merge behaviour

{
 "image": "becorp/nginx",
 "replicas": 2
}

{
 "image": "becorp/nginx",
 "replicas": 3
}

{
 "image": "docker/nginx",
 "replicas": 2
}

andrew.jeffery@cst.cam.ac.uk 42

mailto:andrew.jeffery@cst.cam.ac.uk

Merge behaviour

{
 "image": "becorp/nginx",
 "replicas": 3
}

{
 "image": "docker/nginx",
 "replicas": 2
}

{
 "image": "docker/nginx",
 "replicas": 3
}

andrew.jeffery@cst.cam.ac.uk 43

mailto:andrew.jeffery@cst.cam.ac.uk

Value representation

#[derive(Reconcile, Hydrate, Serialize, Deserialize)]
struct Deployment {
 image: String,
 replicas: u32,
}

andrew.jeffery@cst.cam.ac.uk 44

mailto:andrew.jeffery@cst.cam.ac.uk

Performance vs etcd

andrew.jeffery@cst.cam.ac.uk 45

mailto:andrew.jeffery@cst.cam.ac.uk

Future work

• Merging LSKV and Dismerge for a confidential edge datastore
• Building datastores directly into the model checking
• Exploring changes to the controllers for the different consistency models

andrew.jeffery@cst.cam.ac.uk 46

mailto:andrew.jeffery@cst.cam.ac.uk

The end

Thanks to Martin Kleppmann and Jörg Ott for being my examiners.

andrew.jeffery@cst.cam.ac.uk 47

mailto:andrew.jeffery@cst.cam.ac.uk

Using the hashes as revisions

• Primarily the revisions are opaque, and so changing them to hashes is not a large
issue for clients.

• To tell if clients are up to date they can observe the latest hashes from the response
header.

• There is also a new API for Dismerge that enables clients to determine which
change came before another (unless concurrent).

andrew.jeffery@cst.cam.ac.uk 48

mailto:andrew.jeffery@cst.cam.ac.uk

	What is model checking?
	Model checkers
	What is orchestration?
	Orchestrators
	Deployment environments
	Kubernetes architecture
	Other orchestration platforms: Mesos
	Other orchestration platforms: Nomad
	Existing edge platforms
	What is a scheduler
	Making it fault tolerant: part 1
	Making it fault tolerant: part 2
	Adding higher level control
	What is the problem?
	Defining orchestration
	Statefulset background
	Example orchestration flow
	Example orchestration flow
	Example orchestration flow
	Extracting the model
	Building a concrete model
	Controller definition
	A sample property: unique names
	And in the model checker
	How can we execute the checker?
	Exploring different consistency levels
	Stale reads bug
	Stale reads bug
	Stale reads bug
	Stale reads bug
	Stale reads bug
	Performance: state generation
	Performance: state generation
	Performance: depth exploration
	Performance: depth exploration
	Using the consistency models
	Orchestration near the edge
	Availability of etcd
	Addressing history
	Durability
	Merge behaviour
	Merge behaviour
	Value representation
	Performance vs etcd
	Future work
	The end
	Using the hashes as revisions

