LSKV: Democratising Confidential
Computing from the Core

Andrew Jeffery - University of Cambridge
andrew.jeffery@cst.cam.ac.uk

FOSDEM 23

github.com/microsoft/LSKV

Starting with etcd - the distributed key-value store

“A distributed, reliable key-value

4 I .
store for the most critical data of
Kubernetes o } _
Orchestration a distributed system” — etcd.io

_ J (emphasis mine)

4 I _
M3 o
Metrics engine e

N
S y <> Follower
4 N\
Rook etcd
Cloud-native Leader
storage

Nt L 5

CoreDNS M etcd
DNS and Follower
Service

\Discovery V.

github.com/microsoft/LSKV

The core etcd API

- Put(key, value)
- Range(key, range_end, ?revision)
- DeleteRange(key, range_end)

Put |foo1 = bar @ revision 5

foo2 = baz @ revision 6

- Txn(") XN 1 £603 = bat @ revision 6

- LeaseGrant(ttl)

- LeaseKeepAlive(id)

- LeaseRevoke(id) Range(fool, foo4) = [fool, foo2, foo3]

Range(foofl, foo4, 5) = [foo1]

Watch(key, range_end, ?revision)

github.com/microsoft/LSKV
Datastores in the trusted cloud

github.com/microsoft/LSKV
Problems in the untrusted cloud

github.com/microsoft/LSKV
Problems in the untrusted cloud

-

Problem 2/ Problem 1

github.com/microsoft/LSKV

Problem 1 - Trusted Cloud?

‘m h

ted
N ULl

github.com/microsoft/LSKV

Problem 1 - Trusted Cloud?

github.com/microsoft/LSKV

Solution 1 - Untrusted Cloud

5
LSKV |

Key SGX

encrvpted

Storage

LSKV
—

github.com/microsoft/LSKV

LSKV: The Ledger-backed Secure Key-Value store

a N

~
J

Hypervisor

\ Memory J[Storage /

-
NS

~
J

github.com/microsoft/LSKV
CCF: the Confidential Consortium Framework

github.com/microsoft/CCF
or

ccf.dev

1"

github.com/microsoft/LSKV
CCF: the Confidential Consortium Framework

github.com/microsoft/CCF
or

ccf.dev

Operator
Untrusted

12

github.com/microsoft/LSKV
CCF: the Confidential Consortium Framework

github.com/microsoft/CCF
or

ccf.dev

Operator «
Untrusted

13

github.com/microsoft/LSKV

CCF: the Confidential Consortium Framework

-
Governor ¢ §

github.com/microsoft/CCF Partly

or User
Trusted,

ccf.dev subject to
aCCess

Operator (
Untrusted

14

github.com/microsoft/LSKV

CCF: the Confidential Consortium Framework

oD,
Governor ¢ oy

github.com/microsoft/CCF Partly

or User
Trusted,

ccf.dev subject to
aCCess

Operator (
Untrusted

15

LSKV has an etcd-compatible API

github.com/microsoft/LSKV

Put(key, value)

Range(key, range_end, ?revision)
DeleteRange(key, range_end)
xn(")

 easeGrant(ttl)
_easeKeepAlive(id)
 easeRevoke(id)

Watch(key, range_end, ?revision)*

Put

Txn

foo1 = bar @ revision 5

foo2 = baz @ revision 6
foo3 = bat @ revision 6

Range(fool, foo4) = [fool, foo2, foo3]

Range(foofl, foo4, 5) = [foo1]

16

github.com/microsoft/LSKV

Solution 1 - Confidentiality with compatible API

Problem 2

Trade offs

github.com/microsoft/LSKV

Consistency
Confidential

Management
transparency

API

etcd

Strong
No

Missing

etcd API

LSKV
Optimistic
Yes

Available on the
ledger

etcd API + extras

github.com/microsoft/LSKV

Technical interlude - Optimistic consistency

/\ Y
/ \Replicate il

Put(foo, barL 0
- 345 _w| LSKV
3.45 _b-
<
LSKV ~
Status(3.45L S AN
- » \
Committed \F/ S < . Q
* Save 3.45 : N
Replicate 4
3.45 =S

\ Disk / o

github.com/microsoft/LSKV
Onto problem 2! Mean proxies

Problem 2

github.com/microsoft/LSKV
Problem 2 - Proxies can be mean

« D 17 T
¥ S
Put(alice, £500) Put(bob, £500)
. .
Proxy LSKV
alice = £500 bob = £500
- -
1?

github.com/microsoft/LSKV

Solution 2: Don't trust the proxy - get a receipt

Put(alice, £500)

& GetReceipt()
>

-«
alice = £500

Signed receipt
for bob = £500
<

D INVALID

RECEIPT!!

Proxy

Put(bob, £500)
& GetReceipt()

<

bob = £500

Signed receipt
for bob = £500
<

LSKV

22

github.com/microsoft/LSKV
Solution 2 - Cet receipts

github.com/microsoft/LSKV

Sorry, | missed that

- Current datastores aren't suited for confidential operation

- LSKV is a new confidential datastore, built on CCF with an
etcd-compatible API

- LSKV can highlight untrustworthy proxies using receipts

- Oh, and it is fast: 3.5x throughput, 50% latency vs etcd

24

github.com/microsoft/LSKV

Andrew Jeffery — andrew.jeffery@cst.cam.ac.uk

Thank you

https://github.com/microsoft/LSKV

github.com/microsoft/LSKV

Oh, and its fast - YCSB workloads (3 nodes)

1.0 +

Proportion

0.0 4

1.0 =

Proportion
o
(O]

0.0 4

0.5 4

Better
-
A B - D E F
1
200 400 20 0 20 0 25 50 0 1000 0 100 200
Latency (ms)
[| I
J _A_J ¢ 1L
6 8 50 7.5 10.0 2.5 5.0 75 0 2 4 0 5 10
Throughput (kreq/s) —— etcd —— LSKVSGX —— LSKV Virtual
P

Better

26

github.com/microsoft/LSKV

Ledger

- Operations are either public or private

- Private operations cannot be decrypted by the
operator, governors have to combine key shards

- Responsibility of the operator to synchronise the
ledger files to other nodes when joining new ones

- Ultimately used for disaster recovery

27

github.com/microsoft/LSKV

Optimistic checking

- Since all operations are optimistically acknowledged
you may need to follow up if you want to check
commit status

- Can also get this from responses to other requests

- Plans to have a watch channel for commit status

28

github.com/microsoft/LSKV
Historical staleness

- Specifying a revision acts on a historical copy of the
store

- This can lead to observing stale data

- Watches are served from this

29

github.com/microsoft/LSKV

Durability

- Operations are persisted to disk lazily

- They also may not be available later, try to keep
things in memory

- Stems from not trusting the host

30

github.com/microsoft/LSKV

Tackling untrusted proxies - read receipts

- Similar to write receipts but for read operations
- Processed in-application, at any node (not just the leader)

- May need to add a nonce-like field or minimum revision to range

requests
- Maybe use min revision fields in etcd range requests already

31

