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Starting with etcd - the distributed key-value store
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The core etcd API

- Put(key, value)
- Range(key, range_end, ?revision)
- DeleteRange(key, range_end)

Put |foo1 = bar @ revision 5

foo2 = baz @ revision 6

- Txn(") XN 1 £603 = bat @ revision 6

- LeaseGrant(ttl)

- LeaseKeepAlive(id)

- LeaseRevoke(id) Range(fool, foo4) = [fool, foo2, foo3]

Range(foofl, foo4, 5) = [foo1]

Watch(key, range_end, ?revision)
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Datastores in the trusted cloud
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Problems in the untrusted cloud
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Problems in the untrusted cloud
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Problem 1 - Trusted Cloud?
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Problem 1 - Trusted Cloud?
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Solution 1 - Untrusted Cloud

5
LSKV |

Key SGX

encrvpted

Storage

LSKV
—




github.com/microsoft/LSKV

LSKV: The Ledger-backed Secure Key-Value store
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CCF: the Confidential Consortium Framework
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CCF: the Confidential Consortium Framework
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CCF: the Confidential Consortium Framework
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CCF: the Confidential Consortium Framework
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LSKV has an etcd-compatible API
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Put(key, value)

Range(key, range_end, ?revision)
DeleteRange(key, range_end)
xn(")

 easeGrant(ttl)
_easeKeepAlive(id)
 easeRevoke(id)

Watch(key, range_end, ?revision)*

Put

Txn

foo1 = bar @ revision 5

foo2 = baz @ revision 6
foo3 = bat @ revision 6

Range(fool, foo4) = [fool, foo2, foo3]

Range(foofl, foo4, 5) = [foo1]
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Solution 1 - Confidentiality with compatible API

Problem 2




Trade offs
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Technical interlude - Optimistic consistency

/\ Y
/ \Replicate il

Put(foo, barL 0
- 345 _w| LSKV
3.45 _b-
<
LSKV ~
Status(3.45L S AN
- » \
Committed \F/ S < . Q
* Save 3.45 : N
Replicate 4
3.45 =S

\ Disk / o




github.com/microsoft/LSKV
Onto problem 2! Mean proxies

Problem 2
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Problem 2 - Proxies can be mean

« D 17 T
¥ S
Put(alice, £500) Put(bob, £500)
. .
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Solution 2: Don't trust the proxy - get a receipt

Put(alice, £500)

& GetReceipt()
>

-«
alice = £500

Signed receipt
for bob = £500
<

D INVALID

RECEIPT!!

Proxy

Put(bob, £500)
& GetReceipt()

<

bob = £500

Signed receipt
for bob = £500
<

LSKV
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Solution 2 - Cet receipts
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Sorry, | missed that

- Current datastores aren't suited for confidential operation

- LSKV is a new confidential datastore, built on CCF with an
etcd-compatible API

- LSKV can highlight untrustworthy proxies using receipts

- Oh, and it is fast: 3.5x throughput, 50% latency vs etcd
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Andrew Jeffery — andrew.jeffery@cst.cam.ac.uk

Thank you
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Oh, and its fast - YCSB workloads (3 nodes)
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Ledger

- Operations are either public or private

- Private operations cannot be decrypted by the
operator, governors have to combine key shards

- Responsibility of the operator to synchronise the
ledger files to other nodes when joining new ones

- Ultimately used for disaster recovery
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Optimistic checking

- Since all operations are optimistically acknowledged
you may need to follow up if you want to check
commit status

- Can also get this from responses to other requests

- Plans to have a watch channel for commit status
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Historical staleness

- Specifying a revision acts on a historical copy of the
store

- This can lead to observing stale data

- Watches are served from this
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Durability

- Operations are persisted to disk lazily

- They also may not be available later, try to keep
things in memory

- Stems from not trusting the host
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Tackling untrusted proxies - read receipts

- Similar to write receipts but for read operations
- Processed in-application, at any node (not just the leader)

- May need to add a nonce-like field or minimum revision to range

requests
- Maybe use min revision fields in etcd range requests already
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