
Themelios: a model-checked
reimplementation of Kubernetes

Andrew Jeffery, Richard Mortier
University of Cambridge

Motivation
Is Kubernetes suited to its deployments at the edge?
What architectural changes can we make?
Before making changes we need to understand what
correctness is for Kubernetes.

Correctness
Extract → Implement → Check

Extracting properties
• No formalisation of Kubernetes, or orchestration
• Only prose documentation, or tests
• Tests don’t typically cover general cases

Mapping them to a new model
• Implementing a Kubernetes model for flexibility
• Suitable for model-checking, using actor model
• Extracted properties can then be expressed

Checking the extracted properties
• Run against Kubernetes integration tests
• Can reproduce issues such as ‘Stale Reads’
• Checks more traces than Kubernetes tests

Design choices

Why not an abstract model?
+ Separates specification and implementation
+ Smaller scope to check
- Hard to ensure it matches the implementation
- Different languages and expertise required

Why not a synthesizer?
• Lower performance, difficult to optimise
• Human-unfriendly code
• Trust in the toolchain
• Hard to integrate with existing codebases

Why a reimplementation?
• More {memory-, type-, race-}safety
• Second source of understanding
• Actor model design, isolating controller logic

What is a controller?

1 fn step(&mut self, // local state Rust
2 gs: &GlobalState) // etcd state
3 -> Option<Action>; // what to do

Kubernetes architecture

etcd

API

Kubectl

Worker

Scheduler

Deployment controller

ReplicaSet controller
The Kubernetes architecture, Kubernetes in blue.

Model execution
The reimplementation is in Rust and can be directly run as
Kubernetes cluster controllers.

Integrate with an existing cluster

etcd

API

Kubectl

Worker

Scheduler

Deployment controller

ReplicaSet controller
Themelios (orange) replacing the Kubernetes default

controller-manager. Model-checked controllers connect
directly to a live Kubernetes cluster.

Deploy a new cluster (locally)

in-memory datastore

API

Kubectl

Worker

Scheduler

Deployment controller

ReplicaSet controller
Kubectl interacting with the Themelios model-checked
controllers (orange) deployed in a local setup showing

viability as a standalone cluster.

Aiding in systems design
Having a more formalised model of correctness, a strong
foundation, we can experiment with consistency
requirements and architectures.
What guarantees are there without linearizability?
Could we use hybrid consistency?
What other shapes can we fit Kubernetes to?

Maybe we can make Kubernetes look a bit different:

Acknowledgement: This project has received funding from the
EUROPEAN HEALTH AND DIGITAL EXECUTIVE AGENCY (HADEA)
program under Grant Agreement No 101092950 (EDGELESS project).

github.com/jeffa5/themelios EuroSys 2024 andrew.jeffery@cl.cam.ac.uk

https://github.com/jeffa5/themelios
mailto:andrew.jeffery@cl.cam.ac.uk

	Motivation
	Correctness
	Extracting properties
	Mapping them to a new model
	Checking the extracted properties

	Design choices
	Why not an abstract model?
	Why not a synthesizer?
	Why a reimplementation?
	What is a controller?

	Kubernetes architecture
	Model execution
	Integrate with an existing cluster
	Deploy a new cluster (locally)

	Aiding in systems design

