
Modelling orchestration

August 2024

Andrew Paul Jeffery

Trinity College

This thesis is submitted for the degree of Doctor of Philosophy

Declaration

This thesis is the result of my own work and includes nothing which is the outcome of work done

in collaboration except as declared in the preface and specified in the text. It is not substantially the

same as any work that has already been submitted, or is being concurrently submitted, for any degree,

diploma or other qualification at the University of Cambridge or any other University or similar

institution except as declared in the preface and specified in the text. It does not exceed the prescribed

word limit for the relevant Degree Committee.

Andrew Paul Jeffery

August 2024

Summary

Modern cloud services operate at significant and increasing scale. The growth of these services has led

to the need for automated management to keep them operational across many thousands of nodes and

multiple geo-distributed sites. Orchestrators are the platforms designed to automate this management

and standardise the workflows involved.

The significant uptake of modern orchestrators means that they have expanded their scope out

of private datacenters, into the public cloud, and now even towards the edge of the network. These

are environments for which they are not designed, and while they share some characteristics with

private datacenters, the differences are sufficiently significant to require rethinking the design of the

orchestrators.

In this dissertation, I examine orchestrator design, focusing on the global state they maintain in

their central datastores. To do this I propose a definition of the orchestration problem and provide

a lightweight formalisation using model checking. I use this model to explore the properties of an

existing orchestrator, explaining observed failures arising from changes in the consistency model. I

then explore the impact of variations to the consistency model of the global state on properties and

performance of the model checking.

Using insights from this model and its consistency analysis I then propose two new datastores to

support the control-plane of orchestration platforms, for the public cloud and the near-edge. In the

public cloud data confidentiality is paramount, trying to minimise the actors within the trust boundary

to enable secure, trusted deployments. For the near-edge I focus on availability of a single cluster,

enabling individual locations to process requests without reliance on persistent non-local communi-

cation.

Together, these components, the model and the two datastores, enable orchestration platforms to

be optimised for their environments, enabling more widespread use.

Acknowledgements

The journey to producing this dissertation has seen its fair share of ups and downs. Naturally, it would

not have been possible without the help of so many people.

Thanks first go to my supervisor, Richard Mortier, for reviewing multiple documents throughout

my journey, providing useful guidance, and connections. Heidi Howard was instrumental in forming

this work, through guidance, reading suggestions, and connecting me with the Microsoft Research

community. I also want to thank my internal report examiners Jon Crowcroft, Alastair Beresford, and

Evangelia Kalyvianaki for their helpful feedback during the yearly reports. Martin Kleppmann’s com-

ments have been particularly helpful in progressing the practical implementation side of Automerge

as well as introducing me to the team at Ink & Switch.

Chris Jensen has been a consistent friend through good and bad times, sharing a sporadically

occupied office and sharing his wisdom and constructive views. The rest of my colleagues in FN07

have also been a source of support through my time, providing insights and useful commentary on

my work — I can only hope that I have repayed that. Thanks in particular to Roman Kolcun for getting

in early and handling external Huawei report management, Justas Brazauskas for social events and

always keeping the spirit of the office up, and honorary FN07 member Ian Lewis for the lunchtime

roundups and chats.

My friends have motivated me and provided a place of solace on multiple occasions, always being

supporting. My family have provided mental and physical breaks from work and always been there for

me, again I cannot thank them enough for what they have done for me. Finally, my thanks go to my

partner, Charlene Tang, for putting up with me throughout this journey, my ups and downs, periods

of productivity and unproductivity, and supported me all the way.

Contents

1 Introduction ... 15

1.1 Motivation .. 16

1.1.1 Deployment environments .. 17

1.1.2 Existing orchestration platforms ... 18

1.2 Outline ... 19

1.3 Related publications ... 20

2 Related work .. 23

2.1 Orchestration platforms .. 23

2.1.1 Borg, Omega, Kubernetes .. 23

2.1.2 Mesos .. 26

2.1.3 Nomad .. 26

2.1.4 Others ... 27

2.2 Distributed consistency ... 28

2.2.1 A note on quorums ... 29

2.2.2 Levels of consistency .. 29

2.3 Environments ... 31

2.3.1 Private cloud ... 31

2.3.2 Public cloud ... 31

2.3.3 Cloudlets (near-edge) ... 32

2.4 Model checking ... 32

3 A model of orchestration .. 35

3.1 The orchestration problem ... 36

3.1.1 Resource satisfaction .. 38

3.1.2 Generality .. 39

3.2 The abstract model ... 40

3.3 The concrete model .. 41

3.3.1 Inter-resource relationships .. 43

3.3.2 The framework ... 45

3.3.3 Resources and their controllers .. 48

3.3.4 Checking for conformity ... 54

3.3.5 Extracting and defining properties .. 55

3.3.6 Expressing properties ... 57

3.3.7 Selected properties .. 58

3.4 State consistency ... 60

3.4.1 What consistency does Kubernetes provide? ... 60

3.4.2 Synchronous ... 62

3.4.3 Monotonic and resettable session .. 62

3.4.4 Optimistic linear .. 63

3.4.5 Causal ... 65

3.5 Model execution .. 66

3.5.1 Checker strategies ... 67

3.5.2 Operation generation, selection and application ... 67

3.5.3 Property satisfaction ... 68

3.5.4 Real-world deployment .. 70

3.6 Performance ... 72

3.6.1 State generation ... 73

3.6.2 Depth coverage .. 75

3.6.3 Code coverage .. 75

3.7 Conclusion .. 77

4 Orchestration for the public cloud .. 81

4.1 The public cloud .. 81

4.2 Motivation .. 83

4.3 Overview ... 84

4.3.1 CCF ... 84

4.3.2 Data model and API .. 85

4.3.3 Threat model .. 86

4.3.4 Consistency model .. 88

4.3.5 Fault and durability model .. 88

4.3.6 Incremental adoption ... 89

4.4 Implementation ... 91

4.4.1 Internals ... 92

4.4.2 Consistency model .. 94

4.4.3 Auditability ... 96

4.4.4 Discussion ... 98

4.5 Evaluation ... 99

4.5.1 Setup ... 99

4.5.2 LSKV vs etcd ... 102

4.5.3 Horizontal scalability ... 103

4.5.4 Vertical scalability ... 103

4.5.5 Commit latency and receipts .. 104

4.6 Related work .. 105

4.6.1 Embedded datastores .. 105

4.6.2 Confidential distributed building blocks .. 106

4.6.3 Distributed confidential datastores ... 106

4.7 Conclusion .. 107

5 Orchestration for the edge .. 109

5.1 The edge .. 109

5.2 Motivation .. 111

5.3 Design space .. 113

5.3.1 Consistency and fault tolerance ... 113

5.3.2 Addressing history .. 116

5.3.3 Durability .. 118

5.3.4 Value representation ... 118

5.4 Implementation ... 119

5.4.1 Architecture .. 120

5.4.2 Data model .. 121

5.4.3 API Guarantees .. 122

5.4.4 Lease behaviour ... 123

5.4.5 Durability .. 124

5.4.6 Synchronization ... 124

5.4.7 Typing the values .. 126

5.4.8 Exposed replication status ... 127

5.4.9 Model overheads .. 127

5.5 Evaluation ... 128

5.5.1 Setup ... 128

5.5.2 Starting at the edge ... 129

5.5.3 Making the network reliable .. 130

5.5.4 Providing an optimal network ... 131

5.5.5 Collapsing the cluster ... 132

5.6 Implications for applications .. 132

5.7 Related work .. 134

5.8 Conclusion .. 135

6 Conclusion .. 137

6.1 Motivation .. 138

6.2 Contributions and implications ... 138

6.3 Future work .. 139

Bibliography .. 141

13

14

Chapter 1

Introduction

Orchestration, the automated management of a system, has grown in importance with the increasing

scale of Internet services. Key orchestration platforms have been open-sourced by large companies,

including Twitter’s Aurora (a framework for Apache Mesos), HashiCorp’s Nomad and Google’s Kuber-

netes. Although built for private datacenter deployments, they are increasingly deployed to public

clouds and across edge networks. These platforms are designed for private datacenter deployments, but

as they are increasingly adopted for use in public clouds and near the network edge, the rough edges

are starting to show. Adapting these platforms to such environments is difficult due to fundamental

architectural decisions and the platforms’ complexity. It is difficult to address these problems by

rearchitecting as there are no formal models of correctness for orchestration. Even with an incentive

to build a new platform suited to these environments, platform designers face challenges ensuring

their properties, due to a lack of formal models for existing platforms, or even for the core problem of

orchestration. In this dissertation I argue that:

Orchestration is an underspecified problem given the variety of environments to which it

is deployed. This leads to a lack of guarantees about the platforms that developers and

operators can action and test against. Furthermore, the requirements posed by these new

environments require architectural changes, not always suited to the existing platforms due

to their assumptions about core mechanisms, particularly consistency of global state.

15

1.1 Motivation

Orchestration is the automated management of a distributed compute system. It typically includes

functionality such as resource sharing, healing, (re)scheduling, and scaling, and offers flexible exten-

sion mechanisms. Orchestration as a problem has become increasingly wide-spread as the scale of

Internet services has increased, requiring scalable, automated management of complex distributed

applications. Multiple systems have been implemented to provide this management, handling long-

lived services as well as batch jobs.

Orchestration was initially deployed at scale to address challenges of private companies hosting

Internet services. Design assumptions made included a trusted environment, single tenancy, private

networking, and a need for high levels of automation, due to the scale of operations and infrastructure.

Some of these private companies released versions of their orchestration platforms openly, leading

to wider adoption and thus adaptation to different workloads and environments. Coinciding with

the rise of the public cloud environment and microservices, these orchestration platforms began

supporting small deployments of many smaller applications. Orchestration platforms had to adapt to

survive as is inevitable with ecosystem changes, network effects, and competition.

Orchestration platforms are now commonplace on public clouds with multiple deployment meth-

ods. Nonetheless, their core is still not tailored for the public clouds in many ways, most notably in

security. Many organisations deploy to public clouds, increasing their trust boundary to include the

cloud providers. This change of trust boundary leaves sensitive information resident on the cloud

provider’s machines.

The orchestration platforms are also being increasingly deployed towards the edge of the network.

This environment provides drastically different properties compared to the private and public clouds.

Orchestration platforms are having their design assumptions broken, being stretched out of shape in

order to operate in this environment.

Since the initial implementations of orchestration platforms, no formal model has accompanied

them. Due to this lack of formalism the guarantees provided by each platform are, if present at all, only

available in prose. This adds significant friction to modifying these systems to suit new environments.

Accompanying this lack of formalism is a lack of generalisation of the core problem, making differences

between systems hard to grasp and evaluate.

16

Chapter 1. Introduction

Table 1.1: Comparison of maximum likely resources per machine in each environment.

Environment Private datacenter Public Cloud [29] Near-edge (AWS
Wavelength)¹ [30, 31]

vCPUs 192 [24]² / 120 [69]² 192 8
Memory ? 768 GiB 64 GiB
Disk Capacity ? Elastic Elastic
Disk Bandwidth ? 50 Gbps <4.75 Gpbs
LAN Latency (RTT) <1ms 0.3ms³ [32] <1ms
LAN Bandwidth ? 50 Gbps <10 Gbps
Operator Trusted Untrusted Untrusted

1.1.1 Deployment environments

The environment in which a system is deployed is a key design factor. Common attributes include

network link characteristics, server resources and the threat model. The main environments that I

focus on in this dissertation are the private datacenter, the public cloud, and near-edge cloudlets [114].

Table 1.1 highlights their features.

1.1.1.1 Private datacenter

The private datacenter is where orchestration originated. These datacenters typically enjoy a single

trust domain (the operator of the datacenter), high-performance networking and low-level machine

access due to single-tenancy. Servers are typically well-resourced with many cores available, large

amounts of RAM, and fast and vast remote storage. The network is a key resource for these datacenters,

with low latency and high bandwidth providing optimal conditions, particularly as core hardware is

connected over networks. Private datacenters also make use of novel technologies such as remote

direct memory access (RDMA), unavailable in other public compute offerings.

1.1.1.2 Public Cloud

The public cloud is similar to the private datacenter in that it has high-performance networking and

powerful servers, but there are some key differences: the operator is not always trusted, changing the

threat model, and there are extra layers between hardware and software due to the requirement for

hard isolation between tenants.

¹ Based off an r5.2xlarge instance.

² Per socket.

³ Between availability zones in AWS (Figure 4, [32]).

17

1.1. Motivation

Figure 1.1: Google Trends analysis of orchestration platform terms over the last 10 years.

1.1.1.3 Near-edge cloudlets

Compute is being increasingly pushed towards the edge of the network, deployed in small datacenters

termed cloudlets [114], which is the near-edge environment where I focus. These cloudlets have

moderate networking and resources internally but are small scale, needing to collaborate in order to

perform larger tasks and increase redundancy. Outside of each cloudlet, network conditions are less

reliable and may not be high-performance. This emphasises local, independent operation but allows

for collaboration when possible.

1.1.2 Existing orchestration platforms

Kubernetes is currently the most popular orchestration platform for the public cloud with multiple

efforts adapting it to the near-edge (KubeEdge, K3s, MicroK8s⁴), Figure 1.1 highlights the relative

Google search volume for the three main platforms. The architecture of Kubernetes is focused around

two concepts: a central datastore and controllers. The datastore, commonly etcd, stores all of the state

for the cluster. Controllers are then dynamically added and operate against this datastore, with an

indirection through an API server. An example flow of requests within Kubernetes is provided in

Figure 1.2, showing the high number of interactions with etcd in order to schedule an application

instance. The etcd cluster provides linearizability of reads and writes to its clients [1], the ability to

perform transactions, the ability to watch keys and the notion of distributed leases.

⁴ Kubernetes is commonly abbreviated to K8s.

18

Chapter 1. Introduction

Etcd

Control plane

5, 10, 16 5, 10, 16

1, 6, 11 4, 9, 15

2
3 7 8 12

14

13

etcd node 1

etcd node 2 etcd node 3

API server

ReplicaSet controller Scheduler Kubelet

Container registry

Figure 1.2: Flow of requests to schedule a application instance (Pod) starting from creation
in etcd. The first step is etcd propagating an update to a ReplicaSet resource to the

ReplicaSet controller.

Kubernetes relies heavily on etcd, leading ultimately to limitations of architecture, performance

and reliability. Other orchestration platforms exhibit similar reliance on their central datastores:

Nomad stores state directly in the servers’ key-value store,⁵ and Mesos uses Apache’s ZooKeeper.⁶

Due to the architectural and functional similarity of these orchestration platforms the work in this

dissertation primarily concerns itself with Kubernetes components and terminology.

1.2 Outline

The rest of this dissertation is structured as follows. Chapter 2 covers background material providing

more detail of orchestration platforms, consistency levels and their implementations, more context for

the environments discussed throughout the dissertation, and an overview of model checking.

The three contribution chapters then follow. The first, Chapter 3, defines the orchestration problem

and generalises current orchestration platforms into a formal model, defining components of the

orchestration platform and providing a formal structure to begin modeling their interaction. It also

includes an implementation of this model based on the key components of an orchestration platform

that can be used for model checking, simulation and deployment, before checking desirable properties

⁵ https://developer.hashicorp.com/nomad/tutorials/enterprise/production-reference-architecture-vm-with-consul

⁶ https://mesos.apache.org/documentation/latest/architecture/

19

https://developer.hashicorp.com/nomad/tutorials/enterprise/production-reference-architecture-vm-with-consul
https://mesos.apache.org/documentation/latest/architecture/

with these implementations. Lastly it introduces new consistency levels into the model, enabling an

analysis of the stated components with respect to the expected properties.

The second contribution chapter, Chapter 4, analyses requirements of deployment to the public

cloud, particularly around trust. Using a different threat model more suited to the public cloud, a new

datastore is presented to support orchestration in this environment, in particular leveraging hardware

support and keeping private data inaccessible to attackers.

The third and final contribution chapter, Chapter 5, leverages insights from the orchestration model

to implement a datastore with weaker consistency semantics than current platforms use, increasing

availability. This datastore is particularly suited for the near-edge cloudlet environment.

This dissertation concludes with a summary of contributions and their implications in Chapter 6.

1.3 Related publications

Andrew Jeffery, Heidi Howard, Richard Mortier.

Rearchitecting Kubernetes for the Edge.

EdgeSys 2021.

DOI: 10.1145/3434770.3459730

Heidi Howard, Fritz Alder, Edward Ashton, Amaury Chamayou, Sylvan Clebsch, Manuel Costa,

Antoine Delignat-Lavaud, Cedric Fournet, Andrew Jeffery, Matthew Kerner, Fotios Kounelis, Markus

A Kuppe, Julien Maffre, Mark Russinovich, Christoph M Wintersteiger.

Confidential Consortium Framework: Secure Multiparty Applications with Confidentiality,

Integrity, and High Availability.

PVLDB 2024.

DOI: 10.14778/3626292.3626304

Andrew Jeffery, Heidi Howard, Richard Mortier.

LSKV: A Confidential Distributed Datastore to Protect Critical Data in the Cloud.

Pending submission.

Andrew Jeffery, Heidi Howard, Richard Mortier.

20

https://doi.org/10.1145/3434770.3459730
https://doi.org/10.14778/3626292.3626304

Chapter 1. Introduction

Mutating etcd Towards Edge Suitability.

Pending submission.

The following paper is outside the scope for inclusion but was published during the course of the PhD:

Andrew Jeffery, Richard Mortier.

AMC: Towards Trustworthy and Explorable CRDT Applications with the Automerge Model

Checker.

PaPoC 2023.

DOI: 10.1145/3578358.3591326

21

https://doi.org/10.1145/3578358.3591326

1.3. Related publications

22

Chapter 2

Related work

This chapter covers the main current orchestration platforms and introduces related terminology used

throughout this dissertation. It then outlines consistency at a high level, and practical considerations

for the implementation of such systems. Next, it describes deployment environments in more detail

with particular consideration for their differences and similarities. Finally, it presents model checking

for specification along with different ways to realise implementations that match a specification.

2.1 Orchestration platforms

Several orchestration platforms have been developed and are in active use in industrial settings. This

section aims to outline key common features as well as some seemingly key differences.

2.1.1 Borg, Omega, Kubernetes

Borg [127] is the cluster orchestrator used and built at Google. It runs within single datacenters,

managing thousands of machines per cluster. Omega [116] describes an evolution of Borg’s scheduler

to use optimistic concurrency for scalability of the scheduler. Kubernetes is a from-scratch implemen-

tation of the ideas behind Borg and Omega released publicly as open source.

Borg and Kubernetes revolve around a central datastore storing the control plane’s state,

Chubby [43] for Borg and etcd [2] for Kubernetes. Both Chubby and etcd share a similar architecture,

23

2.1. Orchestration platforms

Etcd

Control plane

etcd node 1

etcd node 2 etcd node 3

API server

ReplicaSet controller

Custom controllers /
Deployment controller

Scheduler Kubelet

Container registry

Figure 2.1: Kubernetes architecture.

using majority quorums along with consensus algorithms (Paxos [91] for Chubby, Raft [107] for etcd)

to ensure strong consistency of their data. They are intended to be deployed in small clusters, typically

5 nodes, and scaled vertically rather than horizontally. An API server mediates access between the

central datastore, the controllers, and other clients, enforcing validation rules and setting default fields

for resources. Controllers are programs that operate a control loop, watching the state of the cluster and

applying changes to it. Core controllers are included with Kubernetes for the base concepts, including

ReplicaSets for managing horizontal scaling of services, a scheduler for assigning Pods (units of work)

to Nodes (resource providers), and Kubelets for executing Pods on Nodes.

Kubernetes in particular features an extensible control-plane with custom functionality via con-

trollers. Figure 2.1 provides an architectural overview of some of the core controllers as well as custom

controllers, it also highlights the dependence on the central datastore, etcd in this case. These custom

controllers exhibit the same pattern that the core controllers (those provided with Kubernetes itself)

do, but can be written for different use-cases and work on different resources within the state, building

on the core controllers and resources.

Given the logically centralised architecture of Kubernetes and the increasing pressure for deploying

the platform into more extreme environments such as the near-edge, many different distributions have

been created to suit. They primarily change the deployment architecture of the vanilla Kubernetes dis-

tribution to try and fit into the environment requirements. Shown in Figure 2.2 alongside the traditional

Kubernetes deployment architecture (Figure 2.2a), all trade-off reliability for different aspects such as

24

Chapter 2. Related work

(a) All-cloud. Kubernetes in the cloud. (b) Multi-site. Kubernetes across edge sites.

(c) Single-site. K3s in individual edge sites per
cluster.

(d) Cloud-centric. KubeEdge across cloud and
edge sites.

Figure 2.2: Kubernetes distribution architectures. Solid boxes indicate edge sites, dashed
boxes are cloud sites; arrows are potential connections between nodes; circles are control-

plane and datastore nodes, squares are worker nodes.

local operation and edge scalability. Deploying vanilla Kubernetes to the edge (Figure 2.2b) leads to a

geographically fragmented control-plane: the various components operate in different cloudlets. This

adds extra latency between the control-plane components, as well as reducing reliability of the system

due to unreliable links between control-plane components and the central datastore. Deploying K3s

(Figure 2.2c), a lightweight edge-focused distribution, to individual edge sites brings strong reliability

within a cluster, but now each individual site is required to be independent, and the operator must

use another mechanism to manage workloads between sites. Finally, KubeEdge (Figure 2.2d), a hybrid

edge-cloud distribution, relies strongly on the cloud, where the expectations of the control-plane can

be maintained. In the case of network failure worker nodes will not be able to perform actions against

the control-plane, such as handling node failures or workload scaling.

Looking back at the vanilla Kubernetes architecture, a brief inspection of the workflow for requests

indicates the central datastore is a primary bottleneck, a key observation for reliability and scalability.

Since the entire cluster’s state is managed in etcd, any interruption to writes to etcd means that cluster

operations such as scheduling, handling node failures, and scaling workloads, cannot be performed.

This means that reliability and scalability of Kubernetes becomes bounded by etcd’s behaviour [75].

2.1.1.1 Etcd

Etcd is “A distributed, reliable key-value store for the most critical data of a distributed system” [2]. It

provides a comprehensive API, primarily over protobuf [3] and gRPC [4], starting from a basic single

25

2.1. Orchestration platforms

key-space key-value model with transactions, leases and watches to higher-level primitives such as

distributed locks and elections. It uses the Raft [107] consensus protocol with majority quorums to

provide linearizable consistency and durability of its data. Etcd clusters maintain a global revision

counter that linearizes operations and can be used for historical queries. Due to its use of linearizability

etcd can struggle to perform at scale [75], as it is fundamentally limited by the fault-tolerance model

it adopts [53]. Since only a leader can process write requests, or linearizable reads [1], it becomes a

single bottleneck for these requests. Additionally, client requests must either target the leader directly

or be forwarded to the leader, adding extra latency out of the client’s control due to dynamic leadership

changes. Due to its fault-tolerance model etcd is unable to process requests without communicating

with a majority of nodes, leaving partitioned sites unable to adapt. Etcd can also exhibit subtle failure

conditions under misbehaving networks [76].

Etcd is widely used as a core building block to store critical data in production systems such

as Kubernetes, Rook [5], CoreDNS [6], and M3 [7], making its core API a stable, widely adopted

target. Etcd also describes itself as providing the “best of class stability, reliability, scalability and

performance” [54].

2.1.2 Mesos

The Apache Mesos orchestration platform was originally designed and built at the University of Cali-

fornia, Berkeley. Mesos provides the core orchestration functionality, and is commonly paired with a

framework (a combination of a scheduler and executor) dedicated for the workload to be run on it, such

as Apache Aurora. The frameworks in Mesos are comparable to controllers in Kubernetes, enabling

users to add custom functionality. Mesos frameworks provide both a scheduler and an executor, rather

than using central concepts such as the Kubernetes Pod.

Figure 2.3 shows the architecture of Mesos and how frameworks fit into it. Similar to Kubernetes,

the control-plane relies on a central distributed key-value store, in this case ZooKeeper, to coordinate

functionality. Frameworks themselves may require coordination internally, and so could use the

existing ZooKeeper cluster or manage their own coordination.

2.1.3 Nomad

HashiCorp Nomad is another orchestration platform that focuses on integration with the rest of

the HashiCorp stack and simplicity. Nomad is simpler than other platforms due to avoiding custom

26

Chapter 2. Related work

Mesos master
(Leader)

Mesos master
(Follower)

Mesos master
(Follower)

ZooKeeper

ZooKeeper

ZooKeeper
Hadoop

scheduler
MPI

scheduler

Mesos Agent
(worker)

Hadoop executor

Mesos Agent
(worker)

MPI executor

Mesos Agent
(worker)

Hadoop executor

MPI executor

Figure 2.3: Mesos architecture [8].

RPC RPC RPC

Forwarding

Replication Forwarding

Replication

Client
(Worker)

Client
(Worker)

Client
(Worker)

Server
(Follower)

Server
(Leader)

Server
(Follower)

Figure 2.4: Nomad architecture [64].

controllers or frameworks, but this also means that higher level resources and concepts cannot be

introduced alongside preexisting resources. However, it is possible to use different task executors on

the worker nodes to support different workload types.

Figure 2.4 shows the architecture of Nomad, following the same pattern of having the control-

plane rely on a central distributed key-value store. Notably different from Kubernetes and Mesos is that

Nomad combines its key-value store into the control-plane servers themselves, rather than deploying

them separately.

2.1.4 Others

Other orchestration systems include Facebook’s Twine [122] and Microsoft’s Autopilot [74]. Both

systems follow a similar structure with a control-plane and a worker-plane. Central state is key to both

with multiple controllers working to realise the desired state.

Most research now focuses on Kubernetes, primarily adapting it towards other environments

though alternatives include DOCMA [78], Oakestra [40], and Liqo [73].

27

DOCMA is a decentralised orchestrator where there are no designated control-plane nodes,

meaning that every node is equal. The lack of centralisation can make DOCMA suitable for deployment

to the edge, particularly cloudlets, avoiding a single place of failure or bottlenecking. In addition to the

modeling of Kubernetes introduced in Chapter 3 and the causally consistent datastore in Chapter 5,

future work may incorporate insights from DOCMA to create a decentralised version of Kubernetes.

Oakestra is a hierarchical orchestration framework targeting multi-site edge environments with

a central orchestrator. This maintains a single root orchestrator, similar to Kubernetes’ native cluster

federation project KubeFed [87]⁷, and thus can lack the resilience of fully decentralised platforms such

as DOCMA. This lack of resilience originates from the centralised way that work is managed between

clusters, as opposed to the decentralised way used in DOCMA. Due to its similarity to federated

Kubernetes, the model presented in Chapter 3 could be expanded to also model the federation of

Oakestra in future work.

Liqo is an extension to Kubernetes that enables peer to peer connections between multiple Kuber-

netes clusters for federating workloads. This different paradigm of federation avoids single points of

failure for federation. The model presented in Chapter 3 could be used to check correctness of the

federation by representing the federation through a different state view.

Due to the extensibility of Kubernetes, a large amount of research has focused on new controllers

to adapt it to new environments and use cases, rather than mutating its core functionality [63, 94, 96,

99, 113, 117, 126].

2.2 Distributed consistency

Given the importance of the central datastore for orchestration platforms, it is a key architectural piece

to inspect in more detail. Fundamentally the datastores are responsible for ensuring the consistency

of state between components. They all make use of strong consistency, typically linearizability for

processing write requests with reads served through layers of caching for scalability. Etcd, ZooKeeper,

and Nomad’s servers make use of strong consistency. Despite this there are other consistency models

that can be used for the datastore, each with its own trade-offs.

⁷ Now archived and no longer under active development.

28

Chapter 2. Related work

2.2.1 A note on quorums

The central key-value datastores, currently in use in most orchestration platforms, are using variants

of Raft and traditional Paxos leader-based consensus protocols. These are also configured to use a

majority quorum for replication, equally balancing read and write performance. A key concern with

this is that the scalability of the system is limited, as the number of active peers is correlated with

the increased latency of the datastore operations, due to extra overhead placed on the leader. Further,

this places an emphasis on deploying the datastore nodes onto homogeneous hardware, with identical

network links between all nodes as any node in the system can become a leader. This is not a technical

limitation, but a practical one given a primary aim of the system is to improve tolerance of node failures

and network partitions.

Other consensus protocols adapt the majority quorum to bias performance towards either reads

or writes. This can be done as the two quorums just have to overlap [67]. Extreme versions of these

quorums could be single node reads at the cost of global writes, making reads extremely cheap, but

removing fault-tolerance in writes. Alternatively, a system could be configured to the other extreme,

using single-node writes but global reads, making writes extremely performant at the cost of fault-

tolerance for reads.

These quorum configurations are best used when the workload present on the datastore is known.

When the workload is known the systems can be configured with asymmetric quorums to optimise

performance for the expected read and write ratio. Given the flexibility of orchestration platforms (e.g.

Kubernetes’ arbitrary custom controllers and resources) this workload cannot be given a standardised

summary. Instead, the developers typically focus on having maximum reliability for both operation

kinds, assuming no skew in the workload directly at the datastore.

2.2.2 Levels of consistency

The strictest consistency model is that of linearizability [65], which is commonly believed to be the

simplest to reason with. It ensures that operations form a single ordering where “every operation

appears to take place atomically, in some order, consistent with the real-time ordering of those

operations” [77]. Typically implemented using a protocol such as Paxos or Raft along with majority

consensus, this is often used to build foundations for other systems to build upon. To improve

performance of some operations at the expense of others, variants of the protocols can be used such

as Fast Paxos [92]. These typically adjust the quorum intersection requirements for different types of

29

2.2. Distributed consistency

operations. Being typically leader-based, these protocols do not offer the highest performance and lack

ways of mitigating latency between nodes, such as when geo-distributed.

In practice, these systems are often leader-based, limiting the horizontal scalability with extra nodes

due to overhead on the leader and the leader being a single bottleneck. However, in practical situations

scalability of the system is often a requirement, for reads this can be realised with read caches. Read

caches also have the benefit of lowering the load on the leader node, enabling more of its capacity to be

dedicated to processing other operations. However, with caching comes staleness, leading to situations

where caches fall arbitrarily behind, for example due to network partitions.

A weaker consistency model than linearizability is causal consistency [98, 129], where causally-

related events appear in the same order on all devices, but does not rely on a total ordering between

events. Causal consistency is stronger than eventual consistency as the dependencies observed for

each operation are captured, and required to be available when later processing the operation on

other nodes. A popular method for realising causal consistency is pairing Conflict-free Replicated

DataTypes (CRDTs) [118] with a causal delivery mechanism. CRDTs describe how to merge operations

made concurrently with each other, ensuring a deterministic and replicable output. The operations

performed in the history create a causal graph, which can then be processed by repeated application of

operations to an initial state and creating a consistent state across all nodes with the same operations.

While this does not provide strong consistency guarantees, it does change the problem from one of

replicating a log of operations from a leader to followers, into a problem of synchronising distributed

directed acyclic graphs (DAGs).

Systems can use sessions to present clients with views consistent with their own actions, despite

potentially connecting to different hosts. There are four key guarantees that can be provided [123], of

which I focus on read your writes in this dissertation. This guarantees that within a given session, all

reads made by a client after a write made by them observe the write. These can be implemented on

top of existing systems, even at the client side, by using revision identifiers for writes. Given a revision

identifier from a previous write, a client can distinguish whether the read response they obtain from

the system includes that write, by comparing the read revision identifier with the previous write’s

identifier. This is one example way of implementing session guarantees that particularly suits existing

systems.

30

Chapter 2. Related work

2.3 Environments

Given how orchestration has migrated out of the private cloud into the public cloud, and is now

increasingly heading towards the edge it is necessary to understand the differences in these environ-

ments. A tabular summary was given in the introduction but more detail is presented here.

2.3.1 Private cloud

The private cloud environment is typically associated with low latency, high bandwidth networking,

resource abundance and reliable connectivity. Services deployed into these environments can make

strong assumptions about their environment, as the owners typically have control over the machines

and the configuration. A main disadvantage of the private cloud is the inefficiency from wasted

resources, since unused resources cannot be shared with other tenants outside the trust boundary. A

second disadvantage is the cost of providing elasticity and geo-distribution, where spare compute is

again required to handle dynamically scaling and replicating workloads.

2.3.2 Public cloud

Much like the private cloud, the public cloud has datacenters with well-resourced machines and

network links. A key difference is the trust structure, with the cloud provider now included in

the trust boundary. Another key difference is the larger scale on offer from public cloud providers,

meaning an increased and simplified ability to run services in a geodistributed manner (within system

limits). However, to realise the elasticity the services may now run on hosts alongside other untrusted

tenants, increasingly trusting isolation mechanisms at the virtualization layer. A key element of this

architecture is distributed but closely-linked individual datacenters, capable of achieving high band-

width and low-latency communication with redundancy, but ideally separate operation. This concept

is commonly referred to as an availability zone (AZ). This means that failures within one datacenter

do not directly impact the functioning of others within the AZ, but service replicas in other AZs

are well placed to pick up similar load for impacted applications. While the latency may not be the

same as intra-datacenter, intra-AZ latency is significantly lower than typical WAN connections. On

the security front, public clouds are beginning to provide trusted execution environments (TEEs) to

enable customers to perform compute, without including the cloud provider in the trusted domain [33,

37, 46].

31

2.3.3 Cloudlets (near-edge)

In order to move workloads closer to users single datacenters need to be split into many cloudlets.

These cloudlets are on the order of one to a few racks of machines. Being smaller in size but greater

in number they are ideal for increased geo-distribution for redundancy, offloading work from edge

devices and offering low-latency services particularly for wireless devices. The network resources

are also typically less well-equipped, having higher latencies to other cloudlets and large central

datacenters, as well as lower bandwidth. Network communication within a single cloudlet may still be

reasonably performant, but unlikely at the full cloud datacenter levels. A notable difference is that the

external links may not be so redundant, or have such high availability due to the increased number of

datacenters, and associated costs of adding the extra redundancy. Due to the reduced resource capacity

at each cloudlet there is a desire to spread work across multiple cloudlets, despite potential network

limitations. This requires a system that is able to scale to the number of cloudlets and efficiently

orchestrate workloads in the case of failures.

2.4 Model checking

Model checking is the process of exploring valid states within a model, checking each against a set

of properties to be satisfied. The model is typically of the Kripke-structure form, a 4-tuple of a set of

states, the set of initial states, a transition relation from state to state, and the labelling operation that

represents property satisfaction. Properties are functions on a single state, returning a boolean result

to indicate satisfaction, or not.

The properties checked during model checking are normally focused on safety properties, those

that are expected to hold in every state such as “a bank account balance never goes below zero”.

Liveness properties, such as “a bank account transaction can always be attempted”, are also possible

but of less concern in this work.

The execution of a model checker can be done using multiple different strategies. Exhaustive

checking enables executing until all states have been checked, but can be time-consuming and limit the

coverage of the state space. Exhaustive checking either focuses on shallow depths with breadth-first

search, or on very deep similar behaviours with depth-first search. State space explosion, where the

number of states grows too quickly to be tractable to check, limits the practicality of these strategies.

Breadth-first and depth-first searches are common for exhaustive testing, with breadth-first giving the

32

Chapter 2. Related work

benefit of shortest paths being found at the cost of increased memory usage. Alternatively, to operate

non-exhaustively, checkers can employ randomization for their check runs, called simulation checking.

This strategy repeatedly starts from one of the initial states, and picks a random path through the state

space until a terminal state is reached (or the search depth is artificially limited to avoid infinite search

paths). This has the advantage of being able to explore parts of the state space, including deep paths

where interesting behaviour can happen at the cost of it not being exhaustive. The simulation strategy

can be guided with distribution information on action choices when choosing the randomized path,

though this requires domain-specific knowledge about the model and can introduce biases against

finding bugs due to less exploration of edge cases. A distribution may be used to guide the model

towards sections of code which have less coverage, similar to fuzzing with AFL [133]. Simulation

checking is most similar to property testing, but follows actions generated from the initial state

within the model rather than testing out various values. Simulation checking is also similar to fuzzing,

however the emphasis in fuzzing is on generating random inputs to test.

Raising protocols to be checked into more abstract representations is a common way to attempt

to make checking more tractable. These are termed symbolic models. The abstraction can lead to

more optimizations of the model to search, improving search speed and limiting state space explosion.

Additionally, these symbolic models can be faster to iterate on early in the design process, and are

suitable for adding more formalism to legacy codebases that may be unsuitable for model checking

directly. Examples of checkers for abstract models are TLA+‘s TLC [132], and Apalache [84]. Despite

building confidence in the protocol, it does not directly lead to confidence in any implementation of

that protocol. Approaches to merge symbolic checking with the implementation have used traces from

the model checker to some success,⁸ but are ultimately limited in the implementation behaviour that

they can check. Other strategies attempt to synthesise implementations of the abstract models directly,

such as PGo [62] and P [52]. These can be slow compared to the hand-written implementations of

the models, making them currently infeasible for most uses. Newer model checkers (Stateright [9],

Shuttle [34], Loom [124]) focus on directly checking the implementation without a corresponding

symbolic model. These have been used within industry with great success [42]. They remove the need

to map behaviours between the implementation and symbolic model or to synthesise an implemen-

tation from the specification. In this dissertation I work with Stateright, since both Shuttle and Loom

⁸ The Confidential Consortium Framework is currently using this approach to map between TLA+ and C++ [66].

33

2.4. Model checking

require the use of local properties based on the local state at a single point in time, rather than global

properties over the entire state of the system as is required to model Kubernetes.

34

Chapter 3

A model of orchestration

Orchestration is a problem that arises from scheduling workloads across multiple nodes, handling

failures, and managing the lifecycle of deployed applications. Primary examples of orchestration

platforms are Kubernetes, Mesos, and Nomad. They have slightly different architectures but solve the

same problem. Despite their broad adoption, these platforms and the problem itself lack any formalism

in existing literature. This chapter adds formalism derived from the existing systems, particularly

Kubernetes as the most widely used orchestration platform.

Adding formalism to systems that are already so widely adopted may seem like a backwards step,

but it is a hard requirement for correctly exploring alternative architectures and system properties

for new environments, and challenges as the field adapts. Without formalism, reasoning about any

behaviour of the system is based only on experimental observation and may vary from release to

release — “correct behaviour” is not always defined. The correct behaviour in Kubernetes is described

using prose descriptions of guarantees in the documentation, and derived from various levels of testing

in the code base (unit, integration, end-to-end). Prose descriptions of guarantees are inherently hard

to reason about, due to incompleteness without a more formal model of the problem, the system, and

the operations it can perform against which properties can be checked. The tests only cover checking

correctness for traces of execution where there have been bugs discovered in the past, or a developer

had the foresight to test a particular trace.

35

Adding formalism provides a model of the problem, along with properties that must be satisfied for

the problem to be considered ‘solved’. The model of the system being checked is also a requirement,

and this is a key variable in the checking procedure. Ideally, from a correctness standpoint, this model

of the system would also be an implementation of the system, to ensure that the properties are not

just checked on an abstraction of the system. With a model, the system can be more explorable when

behaviour is unexpected for learning purposes, and it can be easier to extend, being built in a testable

manner.

This chapter presents an abstract model of the orchestration problem. It presents a model of the

orchestration system that would satisfy this problem, based on Kubernetes. This model is implemented

in a model-checker, tested against the Kubernetes integration tests, and against manually extracted

properties from the Kubernetes documentation and tests. Different models of consistency for the

central state are used to determine their impact on the checker and properties.

The key contributions of this chapter are:

1. A lightweight formal definition of the orchestration problem, §3.1.

2. A formulation of an abstract model for orchestrators that solve this problem, §3.2.

3. A concrete model of Kubernetes suitable for checking against this problem definition along with

properties to be checked, §3.3.

4. The addition of varying consistency levels in this architecture, §3.4.

5. The execution of the model to determine the properties’ status and the real-world deploy-

ment, §3.5.

6. The performance evaluation of the model with respect to differing parameters, §3.6.

Kubernetes terminology is used throughout for convenience but the problem statement and abstract

model are applicable to other orchestration platforms.

The code supporting this chapter’s work is available at https://github.com/jeffa5/themelios.

3.1 The orchestration problem

Orchestration of service components is an online process, requiring components of the control plane to

react dynamically to situations. Control-plane components typically run control loops, running recon-

ciliation logic whenever an input changes. Additionally, due to the complexity of the functionality

these control-planes provide, they are traditionally decomposed into specialised roles. For instance, one

component in a system may be responsible for scheduling application instances to worker nodes, and

36

https://github.com/jeffa5/themelios

Chapter 3. A model of orchestration

the worker node may itself be a control loop. Under this model of decomposed functions, a controller

can be represented as a function that takes a state and produces a new state. In real systems a controller

may be a process, and may be replicated within the same orchestration system.

As described, the orchestration problem is related to the (distributed) scheduling problem. Given

a set of nodes 𝑁 , and a set of workloads (Pods) 𝑃 to run across those nodes, the scheduling problem

assigns Pods 𝑝 ∈ 𝑃 to nodes 𝑛 ∈ 𝑁 using a function schedule : 𝑃 → 𝑁 → 𝑃 ×𝑁 . Pods execute after

assignment to nodes, occupying physical resources for the duration and releasing them on completion,

after which another Pod may be scheduled using those released physical resources.

The orchestration problem generalises this to an arbitrary set of controllers, and arbitrary resources.

It can be stated as:

An orchestration platform is a system of controllers 𝑐 ∈ 𝐶 that operate on resources 𝑟 ∈ 𝑅,

driving the global state of the system so that the current state of each resource matches the desired

specification.

Operations that the controllers perform can be limited to only resource modifications in the global

state, or can include environmental operations, such as spawning processes on nodes, or communi-

cating with other systems.

An example controller would be a scheduler, that decides on which nodes workloads should run;

resources would define the workload to run, as well as the nodes available. Therefore the scheduling

problem can be viewed as a special case of the orchestration problem with two controller types, the

schedulers and the nodes, operating on the set of Pods where the desired state of a Pod is to have

completed its execution successfully. The collection of resources is referred to as as the state of the

system, 𝑠 ∈ 𝑆.

The orchestration system will always be started in a single initial state 𝑠0 ∈ 𝑆. This can be empty

with resources added afterwards, or initialized with resources. Multiple initial states can be used during

model checking but they are independent of each other.

A resource is a combination of the desired state (specification), and the currently observed state

(status). The desired state represents the ‘direction’ that a controller should move a resource’s currently

observed state. The operations that a controller may use to perform this ‘directing’ are part of its

definition.

A controller is a function that takes the current state 𝑠 ∈ 𝑆, which includes the desired specifi-

cation, and produces a new state of the system 𝑠′ ∈ 𝑆:

37

3.1. The orchestration problem

Controller : 𝑠 → 𝑠′

Multiple applications of controllers to a state ideally make progress towards the desired specification

of each resource. Errors during execution and bugs in logic can cause controllers to not make expected

progress. Controllers may perform side-effects during their execution, affecting the real-world to

make progress against the specification of a resource, such as a node controller instantiating a Pod. A

controller may operate on multiple resources in a single execution, for instance updating the observed

state and updating other resources to drive towards the desired state.

Controllers work on a central state rather than issuing commands directly to, for example, worker

nodes, to enable resilience if a controller, in this example the worker, fails. In case of a failure, other

controllers can react and ensure that progress continues to happen by, for instance, rescheduling

workloads from the failed node to other nodes.

The problem can be formulated in two main forms: state-based and operation-based. Having

already defined the state-based formulation of a controller, implementing it directly requires main-

taining the entire state on each controller and sending updated states between controllers. This is

impractical to implement due to the size of the state. Using approaches such as calculating and sending

only differences, often termed delta-states, requires less overhead provided partial states can be stored

at controllers. Delta-states have similarities with the operation-based formulation, focusing on smaller

partial states, but the operation-based formulation is more imperative.

A more imperative model may be focused on direct changes to the state, leading to an operation-

based model. Here is an equivalent formulation of an operation-based controller:

Controller : 𝑠 → 𝑜 𝑠 ∈ 𝑆, 𝑜 ∈ 𝑂

The operation 𝑜 would then be executed on 𝑠 atomically using an Apply function to produce 𝑠′:

Apply(𝑠, 𝑜) = 𝑠′

Alternatively, 𝑠 can be considered a realisation of the state from a given list of operations, built up by

iteratively applying the Apply function.

3.1.1 Resource satisfaction

Each resource has an associated satisfied state (the desired state). Note that it is not always possible

for the resource to reach this state due to failures in the system. Additionally, this state is not

necessarily terminal as some resources can describe indefinitely running services, in which case they

can continually undergo changes from satisfied to unsatisfied and back. A satisfied state can also be

described as the state resulting from repeated applications of all controllers until the state no longer

38

Chapter 3. A model of orchestration

changes, it reaches a fixed point. Using the state-based formulation this is 𝑐(…𝑐(𝑐(𝑠0))). This assumes

a single controller and does not cover situations where a resources’ satisfaction depends on controller

performing operations.

To account for multiple controllers, the condition could be described in the form

𝑐1(𝑐2(𝑐𝑛(…𝑐1(𝑐2(𝑐𝑛(𝑠0)))))) where 𝑐1, 𝑐2,…, 𝑐𝑛 are different controllers. Note that this may not be

the most efficient method of obtaining the final state, as some controllers may perform no changes on

the state once satisfied.

The resource’s satisfaction condition can depend on other resources being satisfied. A directed

acyclic graph between resources, and more generally resource types, can be constructed from these

dependencies. An example of this dependency might be a resource representing a service with multiple

replicas of the same container, a ReplicaSet in Kubernetes terminology. In order for a ReplicaSet

resource to be satisfied, all of the containers that it manages must be satisfied too, often this means that

the containers must be running and ready to serve requests. With knowledge of the resource depen-

dency graph, the satisfied state of a resource can be expressed using only the necessary controllers.

3.1.2 Generality

This definition draws inspiration and terminology from Kubernetes, but it also maps to other existing

orchestration platforms such as Mesos and Nomad.

Mesos primarily differs by not having a central mechanism for running workloads such as a

Kubernetes Pod. Instead, it has multiple frameworks that comprise a scheduler and an executor. As

shown in Figure 3.1, the master gathers which resources are available in the cluster (1), offers them

to each framework’s scheduler in turn (2), and assigns any workloads resulting from an offer (3), to

the executor on that node (4). The master can be thought of as a controller that observes the state of

the cluster, finds spare resources on nodes, and creates a resource in the state that represents an offer.

Each framework’s scheduler then observes the state with this offer, updates the status of the offer with

how many resources it claims, and creates a workload corresponding to that offer (a Pod-like resource

in the state). The executor for each framework then ensures that the Pod-like resource is executed on

the agent.

Nomad is centralised and follows a similar process to Kubernetes involving workloads, nodes and

allocations. After observations are made about available resources on the nodes, a scheduler is invoked

based on the workload specification being scheduled. Nomad does not support custom controllers,

instead supporting different executors on the nodes.

39

<s1, 4cpu, 4gb> (1)

<s1, 4cpu, 4gb> (2)

(3) <task1, s1, 2cpu, 1gb>

(4) <task1, s1, 2cpu, 1gb>

Framework 1 Framework 2

Mesos master

Agent 1 Agent 2

Figure 3.1: Process of offering resources and assigning workloads in Mesos.

The various differences between these three platforms appear to be primarily focused on different

optimisations in use of the controller model, described above.

3.2 The abstract model

The model of an orchestration system, 𝑀 , is formed of an initial state 𝑠0 and a set of controllers 𝐶 .

𝑀 = (𝑠0, 𝐶) 𝑠0 ∈ 𝑆

The state 𝑆 that controllers work on can contain all of the information about the currently operating

cluster, including configuration of nodes, applications, and controllers themselves. Notably, controllers

can store their ‘local’ state in the global state using a new or existing resource, though ideally one that

will be exclusive to it to enable it to be stored locally at the controller.

After a controller produces a new state as a result of its operation, it needs to share this state with

other controllers that may or may not want to perform more operations. There are multiple different

strategies for synchronising this state between controllers, each with its own trade-offs, but the main

focus is on the consistency of the state between controllers, what actual state each controller operates

on. This is of primary interest in order to observe and evaluate interactions and potential conflicts

between controllers that will be working asynchronously and concurrently. Additional models of the

state can then be built that get exposed to a controller to enable exploration of this space.

To support modelling different consistency semantics each state 𝑠 is tagged with a revision counter,

𝑖 making the state view, 𝑠𝑖. When changes are made, they are made with respect to this revision,

enabling dependency tracking for consistency models that require it. The history of operations is kept

to be able to present all necessary state views to controllers. Most simply, using a model of synchronous

reads and writes, where the controller applications are serialized, the model need only keep the latest

state view, reducing the traces to check and thus the resource usage during checking.

40

Chapter 3. A model of orchestration

3.3 The concrete model

I now present the concrete implementation of the model, Themelios.

A key goal of Themelios is to provide a model of an orchestration system. An essential component

of the model to leverage, is being able to express properties of the system over the entire system’s

state. With this in mind, formal proof could capture semantics of the communicating controllers but

would likely be very far removed from any implementation, going against the other primary goal of

the model of being deployable from the same codebase. Further, simple testing methods and property-

based testing provide good coverage of implementations, but lack the richness of a model checker.

Thus model checking provides an intermediate solution. Besides the properties that the system should

maintain, there are other requirements that will only be checkable during execution of the system such

as performance.

This naturally exposes a distinction between the model of the system and the implementation of the

system. This would ordinarily be split between concerns, checking the model in a modelling language

and then implementing the system separately, and using conventional testing approaches to confirm

that it follows the model. However, Themelios uses a different approach, merging the model and the

implementation into one. This removes the possibility that the main executing code diverges from the

properties that the model expects. However, not every aspect of the implementation need be included

in the model, for instance network connection management and message (de)serialization may be

performed differently during deployment. Small wrappers can be used around the core components to

perform these adaptations. For instance, the model takes care of network in an abstract sense, rather

than simulating packets sent between controllers, so for deployment network connections would need

to be managed by a wrapper. Importantly, the wrapper should not be performing complex logic critical

to the correctness of the controller, and should build on existing technologies which provide their own

properties, such as reliable delivery of messages. Despite describing a limited functionality wrappers

can have, they could perform arbitrary execution and should be tested with existing approaches.

In order to keep the interactions between controllers relevant, and useful, for both existing orches-

tration platforms, and future implementations, the controller and state models can be implemented in

a model checker. This provides the benefits of explorability, property assertion, and implementation

reuse. Model checking is explorable as it clearly presents the input state, and the list of operations a

controller produces, from the actual implementation, as would be present during the checking run.

41

3.3. The concrete model

Property assertions are possible over the state at each point in the checking run, allowing to check for

safety. This model can additionally be run in simulation mode which, when coupled with statistical

transitions, enables capturing of realistic behaviour. Finally, as a systems programming language (Rust)

will be used for the model, the controller implementations themselves can be used directly, avoiding

any difference between the checked and deployed controllers.

Rust is used for the model as it is a modern systems programming language providing high-

level features. It provides convenient aspects for implementing models and model checking, making

reasoning about modifications to state and variables clearer (requiring explicit annotation), as well as

enabling clear reasoning about making copies of the model. For checking the model Rust aids with

writing concurrent and parallel code seamlessly through its borrow-checker, increasing the confidence

in correctness, especially when coupled with strong type-safety.

A model checker could be built around the existing Kubernetes implementation and controllers,

written in Go. However, this would be challenging due to the implementation style in Kubernetes not

being designed for model checking where it is preferable to have the model be ‘pure’, not introducing

side-effects. Although the Kubernetes controllers provide this, from inspection they also include logic

for integrating with caches, and other production optimisations. Go’s lack of strong typing, particularly

as used in Kubernetes, which lead to lots of DeepCopy calls using generated implementations to avoid

mutating shared values from the cache also make it more challenging to use via a checker. The lack

of differentiation between mutable and immutable references also makes it difficult to work with

correctly. Themelios corresponds to the Kubernetes architecture, having a central state that controllers

view and perform actions against.

Instead, I re-implemented the core controllers in Rust, using a message-based design where

controllers only produce messages that correspond to operations to be performed against the state,

rather than performing the operations themselves. This implementation cleanly separates what is

local state for the controller, from the global state based upon which it performs operations. Another

benefit of a separate implementation is simply that it exists. Ideally the two implementations should be

interoperable and functionally equivalent. However, the use of feature flags has not been ported over

to Themelios, instead ‘beta’ features are included, and enabled, in Themelios whilst ‘alpha’ features

are not included, and therefore disabled. Other features have not been ported over due to unnecessary

complexity for model checking. These include the scheduler’s multiple internal queues and the ability

specify flexible plugins in the scheduler. Finally, the work of creating a second implementation has

42

Chapter 3. A model of orchestration

highlighted the incompleteness of the integration tests for the original Kubernetes implementation,

and challenges in matching the original implementations due to lack of documented behaviour and

properties to check.

The model checker I used in this work is Stateright. It is implemented in Rust for checking models

built in Rust. It is a stateful model checker meaning that each operation step produces a new state,

and this state represents the current representation of the system. Stateless model checkers such as

Shuttle [34] do not maintain a single state, and so can make reasoning more difficult as they lack a

global overview of the state at a point in time. Besides these differences, in Stateright a property is

expressed over the state at any point in time, whereas in Shuttle properties are represented through

inline assertions in the code being checked. Inline assertions do not have access to the global state of

the distributed system, making it challenging to add properties that depend on multiple actors in the

system.

3.3.1 Inter-resource relationships

Resources can depend on other resources to be satisfied. The relationships between Kubernetes

resources discussed in this work are visualised in Figure 3.2, and the relationships between controllers

and resources are visualised in Figure 3.3. For instance, a single Pod on its own is not of that much use

as it gets scheduled, and upon completion or other interruption, no longer executes. A more useful

mechanism may be a continually running service. This would require a new resource, the ReplicaSet,

whose controller is responsible for creating the Pods and re-creating them upon completion, or other

interruption.

This ownership of resources by resources can be repeated for more intricate controller function-

ality, as represented by a Deployment that owns multiple ReplicaSets to handle features such as

incremental rollout. Importantly, the ability to add arbitrary controllers enables the creation of abstrac&

tions, avoiding a single large controller that is very complex and difficult to reason about. The resources

and controllers should also be composable, being able to be used by higher levels of abstraction reliably.

An implication of inter-resource relationships is that an event on a high-level resource can poten-

tially lead to a large number of related updates. For example, changing the image of a container in the

Deployment specification leads to a new ReplicaSet being created, along with the creation of its Pods,

meanwhile the old ReplicaSet is scaled down, removing those old Pods from running on Nodes. With

arbitrary custom controllers these cascades can have far reaching implications for the control-plane.

43

3.3. The concrete model

Pod

Deployment

ReplicaSet

StatefulSet

Job

PersistentVolumeClaim

ResourceQuantities

Figure 3.2: Resource to resource relationships of resources discussed in this work.

Pod

Node

Deployment ReplicaSet

StatefulSet

Job

PersistentVolume

PersistentVolumeClaim

ResourceQuantities

ControllerRevision

Scheduler

Figure 3.3: Controller to resource dependencies of resources and controllers in this work.
Rectangles are resources, diamonds are controllers, hexagons are both.

From the other direction, an update on a Pod typically has a small impact on the control-plane’s

controllers. An example of this is that a Job, used for batch workloads that are expected to complete

successfully rather than run indefinitely, may require multiple Pods to complete before being satisfied.

Most of the pods completing will only lead to a count being updated in the status of the Job resource,

but the final Pod will lead to it being marked as satisfied, which may lead to other higher level

consequences.

The main point of comparison between these directional changes comes from the fact that there

are often fewer changes to high-level resources, and more changes to lower-level resources.

44

Chapter 3. A model of orchestration

trait Controller {
 /// The operations that this controller can generate.
 /// They should have a corresponding conversion to the
 /// general `ControllerOperation`s using the `Into` trait.
 type Operation: Into<ControllerOperation>;
 /// The local state of the controller.
 type State;
 /// Take a controller step, generating an optional
 /// operation to perform against the state, based on
 /// the current view of the state.
 /// May update local state.
 fn step(&self, global_state: &StateView,
 local_state: &mut Self::State)
 -> Option<Self::Operation>;
}

Listing 3.1: The Controller trait.

3.3.2 The framework

The framework for the model roughly follows an actor model, with controllers being the actors,

observing a central state and performing operations upon it.

3.3.2.1 Controllers

In the concrete model, a controller is a structure that implements a Rust trait named Controller

(Listing 3.1). The step function satisfies the operation-based formulation of a controller, being a

function that takes a state and produces operations. The trait includes a custom type for the operation,

produced by the controller, that can be converted into a central operation type that is applicable to the

state, as in the Apply function from the operation-based definition.

3.3.2.2 States

The state’s structure used in the concrete model resembles that from the Kubernetes state and

contained resources. To this end, the state has a key-value structure based on the type of resource

(Listing 3.2). The Resources container for the resources is a Vec-like wrapper that adds functionality

for interacting with the collection of resources, similar to that of the Kubernetes API server. The main

resource types in the implementation are Node, Pod, ReplicaSet, Deployment, Statefulset, and Job.

All of the resources have a similar structure, with spec and status fields, which are JSON-like

structures. They all have the same metadata structure for defining common fields for identifying

resources and resource-agnostic functionality (Listing 3.3). The Resources type manages some meta-

45

3.3. The concrete model

struct StateView {
 deployments: Resources<Deployment>,
 jobs: Resources<Job>,
 nodes: Resources<Node>,
 pods: Resources<Pod>,
 replicasets: Resources<ReplicaSet>,
 statefulsets: Resources<StatefulSet>,
 controller_revisions: Resources<ControllerRevision>,
 persistent_volume_claims: Resources<PersistentVolumeClaim>,
}

Listing 3.2: The structure of the global State available to controllers.

Table 3.1: Metadata fields managed by the Resources type.

Field name Description
uid The unique identifier for this resource
generation The number of times the spec of the resource has been changed
resource_version The revision that this resource was last modified
deletion_timestamp The time that the resource will be available to delete, indicating that

deletion has been initiated
name The friendly identifier of this resource

Table 3.2: Metadata fields managed by controllers.

Field name Description
owner_references Links to resources that own this resource, likely managing it
labels Indexed custom data for matching and filtering resources
annotations Unindexed custom data
finalizers References to controllers that must be informed before deletion, having

finalizers present prevents a resource being permanently deleted

data fields within each resource automatically, shown in Table 3.1. Other fields are updateable by

controllers, shown in Table 3.2.

Resources that manage other resources find them by specifying a labelSelector in their spec, a

set of labels that a dependent resource must have in order to be considered owned by that resource.

The owning resource also typically adds its reference to the owner_references list for the dependent

resource to indicate a sole owner.

Figure 3.4 shows the lifecycle of a resource. After creation resources are available to be updated

by controllers until a delete is issued. When a delete is issued, the deletion_timestamp is set and

the resource becomes read-only, apart from removing finalizers, which block deletion. Controllers that

had registered a finalizer can then process the soft-deleted resource before removing their finalizer.

When there are no finalizers the resource can be permanently deleted from the StateView with another

delete call.

46

Chapter 3. A model of orchestration

struct Metadata {
 // managed by API server (Kubernetes),
 // or the Resources type (Themelios)
 uid: String,
 generation: u64,
 resource_version: Revision,
 deletion_timestamp: Option<Time>,
 name: String,
 // updateable
 owner_references: Vec<OwnerReference>,
 labels: BTreeMap<String, String>,
 annotations: BTreeMap<String, String>,
 finalizers: Vec<String>,
}

Listing 3.3: Metadata common to all resources.

create delete delete

update

Present (RW) Pending deletion (RO) Deleted

Figure 3.4: Lifecycle of resources. RW means the resource is readable and writable, RO means
that it is only readable apart from the finalizers field.

enum ControllerOperation {
 CreatePod(Pod),
 UpdatePod(Pod),
 DeletePod(Pod),
 CreateReplicaSet(ReplicaSet),
 UpdateReplicaSet(ReplicaSet),
 DeleteReplicaSet(ReplicaSet),
 // etc.
}

Listing 3.4: Operations generated by controllers, to be applied to the state by the API
servers.

3.3.2.3 Operations

Operations in the model predominantly come from controller steps but can also arise from the envi-

ronment. Those from controller steps are ControllerOperations, an example of the enum variants

possible is shown in Listing 3.4. ControllerOperations are straightforwardly applied to the state as

in a typical REST CRUD API, with the API server making minor changes to the resources’ metadata,

such as setting the resource version and generation.

In order to model changes in the environment there are two sets of possible operations,

ArbitraryOperations shown in Listing 3.5, and Restarts shown in Listing 3.6. ArbitraryOperations

47

3.3. The concrete model

enum ArbitraryOperation {
 /// Scale resources by an amount (up or down).
 ScaleDeployment(String, i32),
 ScaleStatefulSet(String, i32),
 ScaleReplicaSet(String, i32),
 /// Change the image of a resource template.
 ChangeImageDeployment(String, String),
 ChangeImageStatefulSet(String, String),
 ChangeImageReplicaSet(String, String),
 /// Toggle the pause status of a deployment.
 TogglePauseDeployment(String),
 /// Toggle the suspend status of a job.
 ToggleSuspendJob(String),
 /// Mark containers as completed.
 MarkSucceededContainer(String),
 MarkFailedContainer(String),
}

Listing 3.5: Arbitrary operations made against the global state.

enum Restart {
 /// Restart the controller with the given index.
 Controller(usize),
 /// Restart the node with the given index, removing it from the cluster.
 Node(usize),
}

Listing 3.6: Definition of a restart arbitrary operation.

are non-deterministic but based on the state of resources in the cluster. Applying the operations

updates the respective resource, performing operations such as scaling and marking containers as

succeeded or failed. These mimic operations that could occur from human clients manipulating the

environment, automated systems reacting to other events and updating the cluster specification, or

the process of executing containers normally. Restarts perform a restart of a controller, resetting its

local state so that it behaves as if it has been replaced by a brand new instantiation of the controller.

Most controllers do not maintain local state besides the session they have with the global state. The

session is stored by each controller in each call of its step function by copying the revision of the

global state. Nodes additionally store the set of pods that are currently running.

3.3.3 Resources and their controllers

This section walks through operation and relationships of the resource types and their associated

controllers in more detail.

48

Chapter 3. A model of orchestration

executes
mounts

provides
Node

Pod PersistentVolume ResourceQuantities

Figure 3.5: Direct Node relationships. Only controller to resource relationships are present.

3.3.3.1 Nodes

Each physical Node has a corresponding resource in the global state, and can run multiple Pods using

the physical resources it has available. These physical resources are specified in the status field of the

Node resource so that other controllers, e.g. the scheduler, can use them in their decisions. Common

physical resources for a Node to provide are a number of (v)CPUs, an amount of RAM, and a limit on

the number of Pods that it can run simultaneously. Other more specialised physical resources are an

amount of persistent disk space (storage), and other resource types such as (v)GPUs. Each Pod can

request associated volumes which the Node mounts, whether locally or over a network connection,

and provides to the requesting Pod.

The control loop of a Node watches the global state for Pods that have been scheduled to it, pulls

the associated resource specification and proceeds to launch the associated containers, which contain

the application. In the model no containers are actually run, only their abstract status is tracked. The

control loop then monitors the status of the executing containers (which can be changed through

ArbitraryOperations), and updates the Pod’s status field accordingly. When a Pod scheduled to the

Node has finished executing, either successfully or not, it is removed from the set of running Pods in

the Node’s local state. When a controller soft deletes a Pod, completed or otherwise, the Node assigned

to run that Pod stops it executing locally when it receives the update, removes it from its local state, if

it exists, and finally performs the hard deletion in the global state.

A typical Kubernetes deployment includes a node&manager controller, responsible for the lifecycle

of Nodes but the model omits this. The key logic is directly implemented as a part of the NodeRestart

operation, where the restarting Node is removed from the global state and its local state is cleared. This

means that there is not a controller deployed in the real deployment of Themelios that is responsible

for managing Nodes. The controller could be implemented but was not a focus of this implementation.

3.3.3.2 Pods

A Pod is the core unit of scheduling and work in the cluster. It is the end target of many higher-level

controllers and as such Pods offer minimal functionality. Each Pod is a single unit of work, but may

49

3.3. The concrete model

requires requires
Pod

PersistentVolumeClaim ResourceQuantities

Figure 3.6: Direct Pod relationships. Only resource to resource relationships are present.

Pending Running

Succeeded

Failed

Unknown

Figure 3.7: Pod lifecycle. Solid lines indicate typical flow. Double boxes are terminal states.

be composed of multiple containers that execute on the same Node with shared access to physical

resources. The node_name field of the spec, which is set during scheduling, specifies which Node the

Pod should execute on. There are also specifications of the containers that should be run, the volumes

that the Node requires be mounted onto the Node before execution, typically for persistent state, and

the physical resources that the Pod requires to execute.

The Pod’s lifecycle phase is stored in its status field, the lifecycle is shown in Figure 3.7. The phase

can be one of Pending indicating that it is either: waiting to be scheduled, selected by the Node, or

started running; Running when all of the containers are running; Succeeded when all containers have

successfully exited; Failed when all containers have executed but at least one did so with a failure code;

or Unknown, explained below. The status of the Pod resource includes statuses for the containers too.

The scheduler is responsible for taking unscheduled Pods, those that are neither running nor

scheduled to run on a Node, and a collection of Nodes to produce an allocation of the Pod to a suitable

Node, if one exists. If there is no suitable Node then the Pod will remain unscheduled. Suitable in this

context means that the Node has sufficient spare physical resources to execute the Pod.

Various scheduling algorithms are deployed in practice to suit particular workloads but they all

share the basic functionality of allocating Pods to Nodes. The scheduler is often an optimized compo-

nent in orchestration due to the importance of its decisions on aspects such as the completion time

of Jobs.

While the Pod lifecycle typically ends with a Pod being in the Succeeded or Failed states, a Pod

can also end up in the Unknown state. This is typically due to a failure to communicate with the Node

responsible for running the Pod. The node-manager is the controller that would be responsible for

updating the Pod’s status in this scenario. In this case, and due to the fact that the responsible Node

50

Chapter 3. A model of orchestration

watches watches
Scheduler

NodePod

Figure 3.8: Direct Scheduler relationships. Only controller to resource relationships are
present.

watches watches
PodGC

NodePod

Figure 3.9: Direct PodGC relationships. Only controller to resource relationships are
present.

may have left the cluster ungracefully, the cluster requires that the old Pod resources are cleaned up.

This can block some controllers, such as the Statefulset controller, if not performed since resource

names are reused for new Pods. The PodGC controller is thus responsible for determining Pods that

can make no progress and deleting them.

The PodGC implementation in Themelios cleans up Pods that are orphaned, i.e., assigned to a Node

that does not exist in the cluster anymore and unscheduled terminating Pods, as it is normally the

responsibility of the Node to delete the Pod.

3.3.3.3 ReplicaSets

A ReplicaSet represents a collection of instances of a single application: multiple Pods. To manage

the set of Pods it identifies them with the selector field in its spec, and tries to maintain exactly the

replicas count of them. It uses the Pod template to know what to create when Pods are missing,

setting basic metadata such as a name and a copy of some metadata for the new Pod. The status

includes a breakdown of information relating to the Pods for the ReplicaSet. It summarizes the total

number of replicas it has running, how many of those are available, how many are ready, and how

many have all of the expected labels from the ReplicaSet. The status also includes the observed

generation that the controller has seen of this resource, to detect when a reconciliation is required.

3.3.3.4 Deployments

A Deployment represents a higher level collection of instances of an application than a ReplicaSet. It

encompasses the ReplicaSet but adds controller runtime logic to handle different deployment strate-

gies for application upgrades. Similarly to the ReplicaSet its spec contains the replicas, selector,

51

3.3. The concrete model

manages template

ReplicaSet

Pod

Figure 3.10: Direct ReplicaSet relationships. Solid arrow lines are controller to resource
relationships, dashed lines are resource to resource relationships.

manages template
Deployment

ReplicaSet Pod

Figure 3.11: Direct Deployment relationships. Solid arrow lines are controller to resource
relationships, dashed lines are resource to resource relationships.

and template fields. Additionally, the Deployment can be paused, e.g. waiting for some manual checks

of the application deployment.

The strategy field of the spec allows for a choice of strategies. The default strategy (rolling update)

creates a new ReplicaSet to match the new Pod template. It then gradually transfers the replica count

from the old ReplicaSet to the new one (by incremental amounts, waiting for Pods to be ready each

time) until the old ReplicaSet has no Pods left. The other option is to just recreate the old ReplicaSet

directly, not gradually shifting replicas at all.

The status of a Deployment resource is similar to that of the ReplicaSet with a breakdown of

information related to the running Pods. A collision_count is stored in the Deployment’s status

field. It tracks the number of times a ReplicaSet has tried to be created that matches one already in the

cluster. The collision_count is used, along with a hash of the ReplicaSet resource, when creating

ReplicaSets to generate a random string in their names to uniquely identify them.

3.3.3.5 Statefulsets

A Statefulset represents a concept similar to a Deployment, but for stateful applications that require

volumes with persistent state. This resource typically has different properties to a Deployment in

how it operates its collection of application instances. Unlike a Deployment, it does not delegate to

a ReplicaSet, directly managing the Pods itself. There are certain guarantees around the order of

creation for Pods in a single Statefulset, in particular providing ordered creation and deletion based

on name. Again, the selector, template and replicas fields exist in the spec for this resource. There is

also an update_strategy field for configuring how Pods are updated, similar to that of the Deployment

resource. A Pod management policy enables operators to require strict ordering in how Pods are created

52

Chapter 3. A model of orchestration

manages

template

manages template

managesStatefulSet

Pod PersistentVolumeClaim ControllerRevision

Figure 3.12: Direct Statefulset relationships. Solid arrow lines are controller to resource
relationships, dashed lines are resource to resource relationships.

manages template

Job

Pod

Figure 3.13: Direct Job relationships. Solid arrow lines are controller to resource
relationships, dashed lines are resource to resource relationships.

and managed, or a more relaxed parallel approach where all Pods are created at once, not waiting

for predecessors to be ready. This strategy also applies when scaling down a Statefulset, optionally

waiting for a Pod’s successors to be deleted first. The status of a Statefulset is very similar to that

of previous resources, including the number of replicas in different states.

Before performing operations the Statefulset controller makes a backup of the current resource

using a ControllerRevision. This is a serialisation of the Pod template so that, if a user wants

to rollback the Statefulset to a previous version, this can be used. With this created, it then

proceeds to manage the Pods for the resource, creating or deleting as needed and ensuring that

PersistentVolumeClaims exist for each Pod.

3.3.3.6 Jobs

A Job resource represents the operation of batch work. A Job directly manages Pods to perform parallel

work on the batch. The JobSpec has the expected selector and template fields. The parallelism

field specifies the number of Pods to run in parallel for the Job, and completions specifies how many

successfully exiting Pods are needed for the Job to be considered complete. The completion mode

provides the option for ordering the Jobs (each given an index). A Job can be suspended to prevent

more work being created for the cluster. The status of the Job resource includes typical information

for the status of the Pods executing the batch work.

53

3.3. The concrete model

Modifies

Watches

Applies operation

Sends state

Returns operation

Calls
step

Returns
operation

Integration test

Cluster State

Controller Proxy

Model Server

Model Controller

Figure 3.14: Integration test setup. Kubernetes components are in solid outlines, Themelios
in dashed. The Controller Proxy lives in the Kubernetes code but proxies calls to

Themelios.

3.3.4 Checking for conformity

Since the controllers in the model are re-implementations of those from Kubernetes they could diverge

from the expected functionality. To mitigate against this divergence the model controllers can run

in the Kubernetes integration test suite. For each controller, Kubernetes provides a set of integration

tests covering the behaviour. The model checking implementations were executed in this test suite by

modifying the original Kubernetes controllers to call out to them over HTTP. This shows their real-

world usefulness already, being deployable, while allowing correctness of a key orchestration platform

to be checked. Table 3.3 outlines the number of tests that each controller has within Kubernetes

and how many of those are run for the model controllers. Figure 3.14 shows the architecture of the

components involved in a test.

A key difficulty in the implementation of these tests was from optimisations made on the Kuber-

netes controllers, such as different queues in the scheduler, which would add unnecessary complexity

to Themelios. Unnecessary as this is an optimisation that could be applied later but does not

directly impact the scheduler implementation’s functionality. The scheduler also supports dynamically

registering plugins to manipulate the scheduling functionality which is not supported in the model

controller. A more complex protocol between the test infrastructure and controllers could support

more fine-grained testing checks. However, since the Kubernetes integration tests rely on working

with the cluster state, rather than introspecting that of each controller, they are somewhat portable

to the model implementations. The Controller Proxy handles some translations to enable the use of

the model controllers.

54

Chapter 3. A model of orchestration

Table 3.3: Number of included and excluded integration tests. Some Job controller tests
were excluded as they test metrics, alpha features, or timing dependent logic.

Controller Total Excluded
Scheduler 6 0
Job 23 8
ReplicaSet 13 0
Deployment 14 0
Statefulset 7 0

3.3.5 Extracting and defining properties

With more confidence that the controllers implement the expected functionality of their Kubernetes

counterparts, they can be used in the model to check properties over more general state spaces than

the integration tests exercise. To check the functionality, some properties are defined, expressed over

the global state and local states of controllers. These properties exist over each transition of the model,

after each application of an operation.

Drawing inspiration from existing orchestration platforms gives very few defined properties that

should be maintained. Here I present some of the properties extracted from the natural language of

the Kubernetes documentation, and from analysis of the integration tests, generalising what the tests

check for into properties.

3.3.5.1 Documentation properties

From documentation:⁹

D1. (Statefulset) For a Statefulset with N replicas, when Pods are being deployed, they are

created sequentially, in order from {0..N-1}.

D2. (Statefulset) When Pods are being deleted, they are terminated in reverse order, from {N-1..0}.

D3. (Statefulset) Before a scaling operation is applied to a Pod, all of its predecessors must be

Running and Ready.

D4. (Statefulset) Before a Pod is terminated, all of its successors must be completely shutdown.

D5. (Statefulset) The Statefulset should not specify a TerminationGracePeriodSeconds of 0

in its pod.Spec.

D6. (Container) A Container is guaranteed to have as much memory as it requests, but is not

allowed to use more memory than its limit.

⁹ Found by searching for “guarantee” on https://kubernetes.io and checking the first five pages of results.

55

https://kubernetes.io

3.3. The concrete model

D7. (Container) Provided the system has CPU time free, a container is guaranteed to be allocated

as much CPU as it requests

D8. (Deployment) If you upgrade a Deployment, all Pods of the old revision will be terminated

immediately, and successful removal is awaited before any Pod of the new revision is created.

D9. (Deployment) If you manually delete a Pod managed by a Deployment, the lifecycle is controlled

by the ReplicaSet and the replacement will be created immediately (even if the old Pod is still

in a Terminating state).

D10. (Job) Kubernetes honors object lifecycle guarantees on the Job, such as waiting for finalizers.

Note that the Statefulset properties apply in the case that the pod management policy is set to

OrderedReady.

3.3.5.2 Integration test properties

From the integration tests (manually extracted):

T1. (Global) Resources that own other resources should always mark an owner reference.

T2. (Deployment) Eventually new ReplicaSets are created.

T3. (Deployment) Eventually a Deployment is complete.

T4. (Deployment) A ReplicaSet has a superset of its parent Deployment’s annotations.

T5. (Deployment) A ReplicaSet has the pod-template-hash in its selector, label and template

label.

T6. (Deployment) All created Pods should have the pod-template-hash in their label.

T7. (Deployment) Eventually old ReplicaSets do not have any replicas.

T8. (Deployment) No ReplicaSet is created while a Deployment is paused.

T9. (Statefulset) Eventually all Pods are created.

T10. (ReplicaSet) ReplicaSet resources that do not have a controller owner reference should be

adopted by the matching controller.

T11. (ReplicaSet) Pods are created and deleted to match the count in .spec.replicas, even if they

might not become ready.

T12. (ReplicaSet) Eventually the .status.observed_generation field equals the generation of the

resource.

T13. (ReplicaSet) Multiple ReplicaSets with overlapping selectors should not fight (should grace-

fully converge to the same replicas).

56

Chapter 3. A model of orchestration

T14. (ReplicaSet) Controller should orphan, and then remove their owner reference when

resources have their labels changed.

T15. (Job) A Job only creates enough Pods to match the parallelism it is supposed to use.

T16. (Job) Indexed Jobs should create Pods in ascending order.

“Eventually” in these properties means that for valid resources and a cluster with enough capacity for

those resources, the condition succeeds when no outside changes are made and the controllers finish

processing the global state.

3.3.5.3 Other properties

Known from documentation and common usage, footnotes link to references.

K1. (Global) Resource names must be unique.¹⁰

K2. (Global) A resource should only have one owner reference that is a controller.¹¹

K3. (Global) Resources cannot be renamed.¹²

A primary challenge in working with Kubernetes at a formal level is that the guarantees it provides

are not clearly presented but scattered across documentation, code, tests and issue reports in informal

ways. There is also the lack of indication as to who upholds some properties, or whether violating

operations are automatically rejected by the core components.

3.3.6 Expressing properties

As the model checks states generated from the repeated application of operations to the initial state

the properties on the state need to be expressed. A common assumption for the properties is that

they eventually become true when the steady state is reached, similar to the formulation of eventual

consistency. Properties can be directly expressed using eventual quantifiers in the model, but this has

the downside that a single trace becomes less useful as it checks for only one instance of a property

being potentially broken, at the end. However, a manual check for a stable state, defined below, can

be used as a precondition for a property being satisfied, transforming an eventual property 𝑝 into an

implication: stable ⇒ 𝑝. With this implication formulation the property can be checked in every state,

like a safety property; those that are not stable are not required to uphold the property, but those that

are stable are expected to uphold it.

¹⁰ https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names

¹¹ https://github.com/kubernetes/design-proposals-archive/blob/acc25e14ca83dfda4f66d8cb1f1b491f26e78ffe/api-
machinery/controller-ref.md#adoption

¹² https://stackoverflow.com/questions/39428409/rename-deployment-in-kubernetes

57

https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#names
https://github.com/kubernetes/design-proposals-archive/blob/acc25e14ca83dfda4f66d8cb1f1b491f26e78ffe/api-machinery/controller-ref.md#adoption
https://github.com/kubernetes/design-proposals-archive/blob/acc25e14ca83dfda4f66d8cb1f1b491f26e78ffe/api-machinery/controller-ref.md#adoption
https://stackoverflow.com/questions/39428409/rename-deployment-in-kubernetes

3.3. The concrete model

A state is defined to be stable by checking that every resource 𝑟 present in the state 𝑠 satisfies the

following condition, provided that it has an observed_generation status field:

stable(𝑟, 𝑠) ≝ 𝑟.metadata.generation = 𝑟.status.observed_generation

∧ 𝑟.metadata.resource_version = 𝑠.revision

And so, quantifying over all states gives the following, for the set of states 𝑆:

∀𝑠 ∈ 𝑆.∀𝑟 ∈ 𝑠. stable(𝑟, 𝑠) ⇒ 𝑝

This brings the global assumption of a final stable state to a local one.

One further requirement is to specify that the property 𝑝 is evaluated in the context of the current

resources’ observed_revision, specified in the status field. This means that to check a property for a

resource in revision 𝑟 the (historical) observed revision 𝑜 is looked at. This ensures that the controller

has seen revisions up to 𝑜 but not past it, preventing properties from being broken without giving the

controller an opportunity to act on them. This observed_revision field is added to the resources and

is not typically available in Kubernetes.

The properties are expressed in the model implementation using Rust functions. The functions get

two parameters: the model’s configuration and the current state. It then can execute arbitrary logic

using these parameters, and must return a boolean result indicating whether the property is satisfied

or not. The checker then evaluates these properties on states corresponding to their type, either every

state (universal properties), or only terminal states (eventual properties).

3.3.7 Selected properties

A subset of the properties that seemed most important were selected for integrating into the checker.

In particular, this selection aims to avoid overlapping properties and so merges some properties

together. For the remaining properties I focused on those that were defined enough that they could be

implemented, rather than having to construct missing parts of the properties. Other properties could

be added with more effort. I have no expectation that this is a complete set of properties for Kubernetes,

though it serves as a useful point to evaluate the model as other properties are not readily available.

The selected properties to be checked for are:

P1. (Deployment) A Deployment is sometimes complete¹³

P2. (Deployment) When a Deployment is stable all ReplicaSets have annotations from their parent

Deployment

¹³ This cannot be always as some traces can contain states where the Deployment cannot complete.

58

Chapter 3. A model of orchestration

P3. (Deployment) When a Deployment is stable, created ReplicaSets have a pod-template-hash

in their selector, label, and template labels

P4. (Deployment) When a Deployment is stable and not paused old ReplicaSets do not have Pods¹⁴

P5. (Job) When a Job is stable it correctly reports the number of active Pods in its status

P6. (Job) When a Job is stable it correctly reports the number of ready Pods in its status

P7. (Job) When a Job is stable, finished Pods that have been observed by the controller have their

finalizer removed

P8. (Node) Pods running on Nodes are always unique by name across the cluster

P9. (ReplicaSet) When a ReplicaSet is stable all created Pods should have the pod-template-

hash label

P10. (ReplicaSet) When a ReplicaSet is stable it correctly reports the number of replicas in its

status

P11. (ReplicaSet) When a ReplicaSet is stable the number of created Pods that match its selector

is equal to that reported in its status

P12. (Statefulset) When a Statefulset is stable it correctly reports the number of replicas in

its status

P13. (Statefulset) When a Statefulset is stable it correctly reports the number of ready replicas

in its status

P14. (Statefulset) When a Statefulset is stable it correctly reports the number of available

replicas in its status

P15. (Statefulset) When a Statefulset is stable the first Pod has the correct start ordinal

These properties rather closely resemble those of the integration tests as they are the most concrete,

especially compared to the prose claims. The key global properties are guaranteed by the implemen-

tation and so do not need checking. Resource names are always unique in the state as the datastructure

maps the names to resources. A Kubernetes API server prevents renaming by a validation of the

operation, Themelios ensures this by checking the uid of the resource being operated on.

¹⁴ The requirement to be not paused was determined through iteration of the property within the model.

59

3.4 State consistency

The model as described now has a global state with local actors applying operations against it.

Properties are checked against this state during execution to ensure safety. A missing component is

selecting what revision of the state controllers act on, both that they read and that their operations are

applied to.

Linking back to current orchestration platforms, Kubernetes, Mesos and Nomad all use centralised,

strongly consistent key-value stores. These ensure that a controller’s operations are applied to a single

history of states. However, controllers are able to read stale revisions of the state, and so could make

outdated operations that get rejected by the central API Servers due to staleness. This consistency

model is suitable in the original context of orchestration: deployment in private datacenters, and may

still be suitable for public cloud deployments, but the varied network conditions at the edge pose a

more severe challenge.

This section explores some consistency models of the state, their implementation, and relation to

real-world deployments. To start, I examine what consistency model Kubernetes provides and present

a motivating issue for having a model of the consistency exposed in the cluster.

3.4.1 What consistency does Kubernetes provide?

Kubernetes maintains the global state within an etcd cluster, supporting linearizable writes. The

controllers are deployed in a distributed fashion, and require keeping their view of this global state up

to date. The potential delay between a write being made to a resource and the update being observed

by a controller is a facet that Themelios has to capture. This introduces the opportunity that controllers

can produce operations that will be applied to a state that is no longer the same as they were generated

for. In Kubernetes however, operations are performed against the central datastore using a compare-

and-swap style transaction. This checks that the modification revision of the existing value is equal

to that presumed by the modification, and if it is not then the transaction is aborted. This reduces

operations performed on a stale state from being safety concerns to simply performance matters.

So, for Kubernetes, etcd provides linearizable writes, and the reads are cached at each controller,

introducing the potential for staleness. Additionally, multiple controllers use leader election to prevent

two being active at the same time. Having controllers observe stale state requires careful handling of

60

Chapter 3. A model of orchestration

the update logic, as viewing previously processed state, effectively jumping back in time, can lead to

bugs such as one, open in Kubernetes since February 2018 [88].

Kubernetes is vulnerable to stale reads, violating critical Pod safety guarantees
— Clayton Coleman, Kubernetes issue #59848

A key challenge with fully linearizable operations is a scalability bottleneck. As requests end up

traversing the central datastore, even for reads, this quickly becomes a limitation, particularly when

the central datastore does not scale. Given the asymmetry in most large-scale orchestration systems

towards reads over writes, an important aspect for performance is avoiding the central datastore

when possible. In order to achieve this caching is used. Caches can be used in multiple places: at the

API servers and locally at each controller. However, despite this providing an opportunity for greater

performance, this also exposes the potential for reading stale data. This can be problematic for compo-

nents expecting to operate on an up-to-date view of the central state. Whilst optimistic concurrency

can limit issues arising when operations must be performed through writes to the datastore, not all

operations may do so. Kubernetes uses caching widely to provide scalability of the platform, and has

encountered issues with the staleness of data within caches at the API servers [88].

To model this situation, given the API servers are not directly represented, controllers are allowed

to view a historical version of the state. In particular a consistency model for the state is used, which

controls what revisions controllers are presented with. In order to recreate the stale reads bug a session-

based consistency model needs to be used. This is described more in §3.4.3.

When controllers are interacting with the state they have a monotonically non-decreasing revision

counter forming their session. However, the session restarts is where this problem occurs. The session

revision is used to prevent controllers jumping back in time to previous states, however on a session

restart the session revision is cleared, along with any cache the controller may have in practice. The

behaviour in Kubernetes, and in Themelios’ resettable session model, is to treat a new session as one

that does not have a session revision, enabling the controller to read any historical state. Kubernetes

relies on the cache being read from being sufficiently fresh, but this is not guaranteed, hence the bug.

In Themelios there is no explicit cache and any historical version can be chosen, showing the true

nature of the issue. As proposed in the issue report, a fix is to change the handling of a missing session

revision to require a quorum read through the datastore to ensure its freshness. This ensures that the

new session revision is at least as high as the previous one, preventing the controller from jumping

back in time.

61

3.4. State consistency

𝑎 𝑏 𝑐 𝑑 𝑒

Figure 3.15: A linear history only presenting the latest state. Dotted states indicate those
that can be read, regardless of session.

3.4.2 Synchronous

A very basic, but simple, model of state consistency is to only allow a linear history, with reads always

observing the latest write. This is the first state consistency model built into Themelios. It enables

checking that properties at least hold in the most constrained environment and are not trivially false.

In the implementation a single vector of states is recorded, but only the latest is presented to

controllers and used to apply operations against. The history is kept live to enable property checks to

be performed, based on those that require the observed_revision of a resource.

A real-world deployment of this consistency model would be hard to realise in a performant and

fault-tolerant manner. Kubernetes does this on a per-resource level, rather than a global level for writes

through the use of compare-and-swap-like transactions against etcd.

3.4.3 Monotonic and resettable session

Rather than rejecting all operations originating from reads of stale state, it is beneficial to allow

controllers to read stale state and perform operations still. This is what is used in Kubernetes, checking

the read revision of the resources being changed. However, controllers also do not want to view

arbitrarily stale state, particularly state already seen. To prevent this session consistency can be used,

particularly read your writes, defining the session as the period where a controller is ‘up’, ended when

it restarts. This gives the resettable session consistency model used in Themelios.

In the resettable session consistency model each controller maintains the last revision that it ob-

served in its local state. The model uses this to filter valid states, ensuring controllers are not presented

with state older than their session revision. This mimics the delay in updates to state being observed

at controllers. This also leads to traces of operations where the controller performs step, and only

updates its session revision multiple times in a row before reaching a state at which it has an operation

to perform. This is expected behaviour in practice. One flaw with this model is that controllers can

restart. When they restart their local state is reset, clearing their session revision. This leads to the

model being able to present the controller with a state having any revision. Effectively, the controller

can time-travel. This corresponds to the problem described in the stale-reads issue previously.

62

Chapter 3. A model of orchestration

𝑎 𝑏 𝑐 𝑑 𝑒

Figure 3.16: A linear history using sessions to prevent viewing already observed states.
Dotted states indicate those that can be read with a session token of 𝑏, indicating that a

client has already seen 𝑏.

The monotonic session consistency model ensures that when a controller does not have a session

revision that it receives the latest state. This can equate to doing a linearizable read through the

datastore. This prevents the stale-reads issue by ensuring that the revisions that the controller observes

increase monotonically.

Both models, as implemented in Themelios, only provide read-your-reads semantics, not guaran-

teeing that writes by the same controller are observed next. This aids the simplicity of the model,

particularly as it avoids the requirement that the datastore reply with the revision immediately. Writes

are still totally ordered, as in the synchronous model, and so transactions can perform compare-and-

swap operations.

To implement these strategies the same sequence of operations is maintained as in the synchronous

history. However, the logic for returning the set of valid revisions reflects the description above, notably

enabling states before the latest to be viewed.

In reality this is a commonly used consistency model, with common issues around the definition

of the session, particularly what happens when a connection breaks. It is used by Kubernetes, on top

of a strongly consistent datastore to enable stale reads whilst mitigating against time-travelling back.

3.4.4 Optimistic linear

With reads now able to observe stale versions of the state, the consistency for writes can be weakened.

Rather than requiring the writes to be acknowledged by the leader node of the datastore cluster after

being replicated and committed, they are optimistically processed and acknowledged by the leader

before replication. Optimistically acknowledged writes are then replicated to the rest of the cluster and

committed in the background. Before being committed the cluster can undergo a leadership election,

leading to the uncommitted, optimistic writes on the old leader being lost in following histories. The

optimistic writes on the old leader may still be available to read until it catches up with the new leader.

Writes may still be able to be made as extensions to the old optimistic states due to the optimistic

acknowledgement, however they will not be able to be committed. This means that each term is split

into a committed set of writes, and an uncommitted ‘optimistic’ set of writes. When the controller

63

3.4. State consistency

𝑎 𝑏 𝑐

𝑑 𝑒

Figure 3.17: An optimistic history of operations. Operation 𝑐 is accepted at the leader but
not committed before a leader election happens, changing the history so 𝑑-𝑒 follows from

𝑏. Dotted states indicate those that can be read with a session token of 𝑏.

Table 3.4: Revision that the operation would be applied to, based on the read revision and
the latest revision as in Figure 3.17.

Read at
Latest 𝑎 𝑏 𝑐 𝑑 𝑒
𝑎 𝑎 𝑎 𝑎 𝑐 𝑐
𝑏 𝑏 𝑏 𝑑 𝑒
𝑐 𝑐 𝑐 𝑐
𝑑 𝑑 𝑑
𝑒 𝑒

observes the new leader’s term, updating its session, the previous optimistic writes are no longer visible

to it. All committed writes are linearizable.

To implement optimistic history a sequence of operations is recorded, in a vector as before. This

sequence represents a tree, with each element storing its predecessors. When a change is to be applied,

the process looks at the revision it was made from and the current state of the revisions. If the change

was created from a read revision before the latest commit point (a branch in the tree), then it is applied

to the optimistic part of the branch the read revision is part of. If the change was created from a read

revision after, or the same as, the latest commit point then it is applied to that read revision directly.

Note the latter case leads to an extension of the last optimistic state only if that is what was observed,

otherwise it causes a commit. Table 3.4 outlines the write options for the history in Figure 3.17.

This consistency model primarily takes advantage of the fact that, in datacenters, deployments

of these key-value stores are largely stable, enabling operations to be performed with lower latency

due to avoiding replication. This can reduce latency particularly in systems such as Kubernetes where

operations must filter down through multiple levels of controllers before having a final effect on the

running system.

64

Chapter 3. A model of orchestration

3.4.5 Causal

Being even more optimistic than optimistic-consistency the linearizability of writes guarantee can

be weakened completely, focusing on causal consistency. This captures the dependencies between

operations, the read revision that a change was generated from, for example. This leads to the history

being a directed acyclic graph (DAG) with a set of heads that have no successors. Each revision is

still a unique single identifier within the graph. However, as this is a DAG rather than a tree, readers

can observe merged revisions. These are identified by states with multiple revisions. The merging of

states in the model is last-writer-wins at the per-resource granularity, though in practice other merging

strategies would be possible to implement.

When an operation is to be applied, it is applied to the state identified from the read revision,

or merged state if a set of revisions was observed. This provides a single new revision that merges

multiple others.

The set of valid revisions a reader may read is calculated in a multi-step process:

1. Calculate the set of revisions that are the successors of the readers session.

2. For each successor, calculate the set of concurrent revisions for that successor. The concurrent

revisions are those that are not predecessors or successors of the revision.

3. All possible combinations of simultaneously concurrent revisions are then returned.

For example, based on Figure 3.18:

1. With a session of 𝑏 the successors are 𝑑 and 𝑒.

2. The set of concurrent revisions for 𝑑 is {𝑑, 𝑐, 𝑒}, and for 𝑒 is {𝑒, 𝑑}.

3. The combinations of these are {{𝑑}, {𝑑, 𝑐}, {𝑑, 𝑒}, {𝑒}}. The set {𝑑, 𝑐, 𝑒} is not valid as 𝑐 is a

predecessor of 𝑒.

The implementation represents this as a sequence of states where each element tracks the state, prede-

cessors, successors and concurrent revisions, enabling traversal of the states as a DAG. This enables

traversal of the graph but also quickly identifying the concurrent states. When no session is provided

then the reader may observe any combination of the heads, represented as what a Node may actually

have. The revision would not be expected to rollback in practice, as the reader would be connected to

the same Node which ensures causal ordering.

This models a system with multiple Nodes, particularly suited for edge deployments across multiple

sites. There is no requirement for the datastore Nodes to communicate before performing operations

thanks to the causal model. This focuses on availability under partitions, where causal consistency is

65

𝑎 𝑏

𝑐

𝑑

𝑒

Figure 3.18: A causal DAG of operations. At the end there are two heads: 𝑑 and 𝑒 as they
have no successors.

Table 3.5: Number of tests ported from Kubernetes to Themelios per controller. Figures
reproduced for Kubernetes counts from Table 3.3.

Controller Kubernetes Themelios
Scheduler 6 0
Job 23 2
ReplicaSet 13 2
Deployment 14 3
Statefulset 7 3

the strongest possible consistency model [28]. Thus the updates can thought of as being performed

locally to the controller, and then replicated to other controllers, removing the need for a central

datastore.

3.5 Model execution

To execute the model at least one initial state (𝑠0) is provided, the set of controllers to execute (𝐶),

and a consistency setup for the state history. The execution is in essence then the repeated generation

of operations from the current state, selecting an operation to perform next, and then applying the

operation to the current state to obtain the next state.

To provide suitable initial states for seeding the checking I have ported some of the Kubernetes

integration tests, the counts for each are shown in Table 3.5. These are focused on testing single

controllers but all relevant controllers are enabled in Themelios, enabling full testing of functionality

‘below’ a controller. No scheduler tests were ported as the properties being tested for were focused on

liveness rather than safety.

This section outlines the strategies to execute the model for checking properties. It also outlines

ways that the model’s components can be deployed.

66

Chapter 3. A model of orchestration

1

2 3

4 5 6

(a) Breadth-first search.

1

2 5

3 4 6

(b) Depth-first search.

1

2

 3

(c) Simulation search.
Figure 3.19: Flow of states checked in different search strategies. Numbers in nodes

represent traversal order.

3.5.1 Checker strategies

The checker can execute the search with multiple strategies, each having different trade-offs, visualised

in Figure 3.19. Exhaustive checking can be done using breadth-first search (BFS, Figure 3.19a) or depth-

first search (DFS, Figure 3.19b). These track all states visited and complete once every state reachable

in the model has already been visited. BFS will provide the shortest path for property violations but

leads to larger memory consumption. DFS uses less memory but violation paths will not necessarily

be the shortest. The depth of a search can be artificially limited, for instance for limiting the number

of states to explore or to implement iterative deepening.

Non-exhaustive checking can be performed by using simulation mode, Figure 3.19c. This performs

multiple passes from the initial state of the model to a final state, making choices of operations along

the way based off a random choice based off an initial seed. This search does not guarantee that all

states will be explored, but does provide lightweight, efficient checking. Simulation checking has been

used in other model checkers for real-world systems with success [42].

3.5.2 Operation generation, selection and application

All checking strategies execute the same model and so repeatedly perform the following steps:

1. Generate the set of potential next operations from the current state

2. Select a next operation to perform

3. Apply the operation to the current state to obtain the next state

Generating the set of next operations comes down to the split between controller steps, generated per

possible revision the controller could be viewing, and the environmental operations which only take

effect on the latest state, Listing 3.7. Selecting a next operation to perform depends on the checker,

the simulation checker choosing at random, with the DFS and BFS adding all operations to a stack

67

3.5. Model execution

operations = []
add operations for each controller for each possible revision
for (controller, localstate) in state.controllers.items():
 min_revision = controller.min_accepted_revision()
 for stateview in state.views(min_revision):
 operation = controller.step(stateview, localstate)
 if operation:
 operations.append(operation)
add operations from the environment
latest_state = state.latest()
operations.append(arbitrary.operations(latest_state))
for i in range(state.controllers):
 operations.append(ControllerRestart(i))

Listing 3.7: Python example code for the generation of operations.

or queue, respectively, that will be processed in order. Applying the operation to the current state is

simply handled in the model as part of its normal execution. The implementation determines the type

of operation and applies it to the central state, like the Kubernetes API server does.

3.5.3 Property satisfaction

Table 3.6 shows an overview of whether the implemented properties are satisfied for each consistency

level in the model. This is based on a simulation run that is limited to depth 200 to avoid very long

traces. This aims to provide coverage of different paths to find invalid properties quickly. Runs are

performed with 1 controller and then again with 2 controllers to assess the impact on properties of

uncoordinated controllers. All of the properties pass for the linearizable history, as expected, due to

there being no staleness and the controllers always operating on the latest state.

3.5.3.1 Replicating the stale reads bug

The stale reads bug is a key example of where the consistency model between distributed components

has become a problem, by violating a guarantee [88]. The ability for API servers to return stale data

to clients leads to a violation of the guarantee that all running Pods have unique names. The expected

impact of violating this uniqueness guarantee is “likely data loss of critical data” [88]. The issue itself

describes steps to reproduce the problem in more detail, but it stems from a change that made sessions

not persist over restarts of clients, and applies in the case where multiple API servers are running. At

a high level the problem occurs from the following series of events, reproduced from the issue [88]

and edited for simplicity:

1. T1: StatefulSet controller creates pod-0 which is scheduled to node-1

68

Chapter 3. A model of orchestration

Table 3.6: Results of executing the model checker in simulation mode aggregated across all
tests, depth limited to 200. A ✓ means that the property held across all tests, a ✗ means

that at least one test failed. Numbers in parenthesis next to each failure indicate the
number of controllers the test used. P8 corresponds to the stale reads bug.

Property Synchronous Monotonic
session

Resettable
session

Optimistic
linear

Causal

P1 ✓ ✓ ✓ ✓ ✓(1), ✗(2)¹⁵
P2 ✓ ✓ ✓ ✓ ✓
P3 ✓ ✓ ✓ ✓ ✓
P4 ✓ ✓ ✓ ✓ ✓
P5 ✓ ✓ ✓ ✓ ✓
P6 ✓ ✓ ✓ ✓ ✓
P7 ✓ ✓ ✓ ✓ ✓
P8 ✓ ✓ ✗(1, 2) ✗(1, 2) ✗(1, 2)
P9 ✓ ✓ ✓ ✓ ✓
P10 ✓ ✓ ✓ ✓ ✓
P11 ✓ ✓ ✓ ✓ ✓
P12 ✓ ✓ ✓ ✓ ✓
P13 ✓ ✓ ✓ ✓ ✓
P14 ✓ ✓ ✓ ✓ ✓
P15 ✓ ✓ ✓ ✓ ✓

2. T2: pod-0 is deleted as part of a rolling upgrade

3. node-1 sees that pod-0 is deleted and cleans it up, then deletes the pod in the API server

4. The StatefulSet controller recreates pod-0, as part of the rolling upgrade, which is assigned to

node-2

5. node-2 sees that pod-0 has been scheduled to it and starts pod-0

6. The node controller on node-1 crashes and restarts, losing its session, then performs an initial

list of pods scheduled to it against an API server in an HA setup (more than one API server), that

is partitioned from the master (watch cache is arbitrarily delayed). The watch cache returns a list

of pods from before T2

7. node-1 fills its local cache with the list of pods from before T2

8. node-1 starts pod-0 and node-2 is already running pod-0

At this point the uniqueness guarantee is broken, and for a StatefulSet deployment, as in this scenario,

data loss can occur. This problem is not unique to the StatefulSet controller, but has a higher impact

due to the potential for data loss.

¹⁵ Fast failure means that this sometimes property can not always be satisfied when another property fails too. In this
case P8 also failed in the run.

69

3.5. Model execution

etcd

API

Kubectl

Worker

Scheduler

Deployment controller

ReplicaSet controller

Figure 3.20: The Kubernetes default architecture, Kubernetes in solid outline.

This problem would be resolved when the first Node catches up with the state, stopping its Pod.

However, this can take time to catch up, impacted by network conditions. Despite the severity of this

issue, breaking a core guarantee of the system, it remains open since its creation in February 2018 (6

years at the time of writing).

This problem can be recreated in the model by using an initial state with two Nodes, a single

Statefulset controller and scheduler. Additionally, the ArbitraryOperations that perform an update

of the image are needed, to trigger a rollout. This also requires the resettable session consistency level.

This setup is expected to form a core, simple, test case of a full test suite used when developing the

controller. This demonstrates the advantages of the model as an alternative to tests as it:

1. Clearly shows the trace of execution leading to the failure

2. Provides the property that was violated

3. Can be run exhaustively to check fixed behaviour

To reproduce this issue, using the test harness and the below described resettable session history, the

checker runs in simulation mode for only 1 second.

3.5.4 Real-world deployment

A key contribution of this work, and the reason for a reimplementation of the Kubernetes controllers

is to use a single, shared implementation of the controllers for both model-checking and real-world

execution. I have shown how the model checking executes, increasing confidence in correctness. Now,

I highlight how the implementation can be executed directly, by integrating it with wrappers that

enable deployment of just the core controllers to interact with an existing Kubernetes cluster, and the

deployment of all of the controllers as a standalone cluster. The default architecture of Kubernetes,

with a subset of controllers, is shown in Figure 3.20 for reference.

70

Chapter 3. A model of orchestration

etcd

API

Kubectl

Worker

Scheduler

Deployment controller

ReplicaSet controller

Figure 3.21: Themelios (dotted outline) replacing controller-manager in the default
Kubernetes deployment.

3.5.4.1 Integrating with an existing cluster

Themelios focuses on the core controllers in Kubernetes, most of them corresponding to what is

included in Kubernetes’ kube-controller-manager, a single binary that internally runs all of the core

controllers. Themelios controllers can also be built into a binary that exposes the same functionality,

notably it can:

1. Create resource watch subscriptions with the API server to reflect global state changes to the

local state cache

2. Execute controller steps on the local state cache to reconcile

3. Perform any returned operations from reconciliation through the API server

Figure 3.21 highlights the controller differences in the architecture.

A key piece of the ease of adding this functionality for the controllers is that they operate on the

global state, rather than requiring more complex connection with the outside world, justifying that

operating on the state is a good abstraction.

I have successfully run the single binary version of Themelios against an existing Kubernetes

cluster,¹⁶ and reconciliations of resources occurred in the Kubernetes cluster as expected.

3.5.4.2 Running as a standalone cluster

In addition to being able to run the core controllers against an existing Kubernetes cluster, Themelios

can operate standalone too, though not actually running containers. For this, the other controllers

that are not included in the kube-controller-manager are required (the scheduler and worker nodes),

along with a wrapper in Themelios to enable interaction via kubectl, as shown in Figure 3.22.

The architecture runs on a single machine, with the worker nodes not truly running the containers,

just behaving as they have in the model. This is sufficient to show the proof of concept. More wrappers

¹⁶ Created with kind [10], a tool for running local Kubernetes clusters using Docker container “nodes”.

71

in-memory

API

Kubectl

Worker

Scheduler

Deployment controller

ReplicaSet controller

Figure 3.22: Kubectl interacting with a deployed Themelios cluster (dotted outline).

could be used to separate out the components using a similar pattern, to enable them to run on distinct

nodes and truly run the containers.

The core of the Themelios model takes the place of both an API server and etcd from Kubernetes.

This exposes the state to the controllers in the cluster as well as performing API server functionality to

manage resource metadata. Controllers are spawned as asynchronous tasks that periodically poll the

state for simplicity, protected via a mutex. Watch streams could have been used instead of polling the

state but polling was simpler to implement. Any operations that the controllers generate are directly

performed on the state, whilst the mutex is held. This uses in-memory storage for simplicity, removing

persistence.

To enable interaction with the state from kubectl, like a normal Kubernetes cluster, I implemented

a simple REST API, mimicking the Kubernetes API server. This does some basic translation of the

JSON received in request bodies into the typed representations for the state, and then performs the

appropriate operation (based on CRUD). This has been tested by direct interaction with kubectl,

creating a Deployment and watching the corresponding processes unfold (ReplicaSet creation, Pod

creation, Pod scheduling) using listing operations on the resource types.

3.6 Performance

The performance of the model covers the rate of states generated during checking, its coverage, and

how the performance of these relates to the performance in deployment.

Throughout, model checking executions are only done with simulation checking. This is due to the

complexity of the models, leading to BFS traversal consuming too much memory, eventually causing

out of memory errors. DFS would be suitable but as it does not perform randomization on the operation

choice it can be limited in the paths it explores in a given time period. The max depth is limited to 100

for one run, and 200 for the next, preventing traces becoming too long. As examined later in §3.6.2,

72

Chapter 3. A model of orchestration

these depths trade the number of traces completed in the time with the complexity, measured using

the depth as a proxy, of each trace. The results are from running the ported tests in Themelios, each

running sequentially and for 60 seconds to complete in a reasonable time. More extensive checks

on powerful machines could be performed over much longer durations, though simulation checking

aims to get good coverage of the search space quickly. Additionally, due to the overheads for weaker

consistency models, more time may be desired to more thoroughly evaluate them, along with their

larger state space.

The machine used to run the tests for the results presented here has a dual socket Intel® Xeon®

Silver 4112 CPU @2.6GHz (each with 4 cores, 8 threads) and 187GiB RAM.

3.6.1 State generation

The primary function of the checker is to generate and explore states. The faster that states can be

generated, the more can be covered in a period of time, increasing the chances of finding violations, if

any exist. The generation of states is primarily bottlenecked by:

1. The rate of determining valid revisions for a controller

2. The speed of applying the controller logic to the state

3. Applying the operations to the state

4. Hashing of state, done within the model checker itself

Naturally, the fastest computation is that which is not performed, so the different history consistency

models largely dictate the performance. The synchronous history is the simplest and fastest, the causal

and optimistic linear are slowest, as shown in Figure 3.23. This is due to the fact that the latter models

have to generate more revisions to choose from. Table 3.7 breaks down the grouping of the top 10 parts

of example runs for comparison. Only the synchronous and causal consistency models are presented

as they represent the extremes in terms of performance. This is useful to inform what is consuming the

computation during checking and what might present performance optimisation opportunities. For

instance, the model checker itself performs lots of hashing of state due to tracking what it has visited, so

if the performance indicates most of the computation is on hashing then the model itself likely has little

left to optimise, besides potentially reducing the size of the state to be hashed. When increasing the

maximum depth of the traces, to explore more complex interactions deeper in the search, performance

degrades slightly. All models have an increased overhead from keeping track of more state as it is

built up through the interactions. Additionally, models such as the causal model are impacted more

73

3.6. Performance

Figure 3.23: States generated per run, which lasts 60 seconds, aggregating by number of
each controllers and consistency model and limiting the max depth. More controllers adds

more complexity, decreasing the number of states that are explored. More complex
consistency models (towards the left) also reduce the total number of states explored. Each

point is a run of a test scenario inspired by the Kubernetes integration tests and has
different complexity.

severely due to their need to calculate the potential revisions across a larger history, leading to more

work being done in each trace.

The total number of states explored in a fixed time varies within a single consistency model, con-

troller count pair due to the initial state being different and the associated difference in the branching

factor of operations.

74

Chapter 3. A model of orchestration

Table 3.7: Grouped totals of the top 10 functions from a perf record of a single test using
a single core for 10 seconds. As reported by perf report --no-inline --no-children.

Category Synchronous
percentage

Causal
percentage

Hashing 55.52 31.94
BTreeMap iteration 3.16 0
Vec iteration 3.00 0
Memory copy 0 3.00
Memory allocation 0 5.77
Memory free 0 2.61

3.6.2 Depth coverage

Another interesting metric from checking is how deep the explored paths are. In the simulation runs,

each trace starts from an initial state, repeatedly chooses operations and applies them to the state,

until either there are no new states (due to a cycle or no more operations), or the target max depth is

reached. The maximum depth is set to encourage time spent checking shorter paths, however the aim

is to ensure that not all of the traces are reaching it as this could indicate that there is a lot of logic

left to explore after it. Figure 3.24 shows the maximum depths of traces, combined across runs, with

Table 3.8 showing the total number of traces explored. Notably there are fewer traces reaching the

depth limit for consistency models other than causal as expected due to the causal model’s complexity

and sheer number of states to explore, leading to more being deep traces. As fewer states are explored,

particularly for causal history with two controllers, fewer states, and therefore traces, are explored

within the duration of the run. This leads to fewer datapoints in the plot for those lines, making them

seem more ‘bumpy’. It is not expected that the lines for cases with maximum depth 100 and 200 will

be the same up to depth 100, this is because there is more opportunity to explore other traces during

the run when the depth is limited sooner. This can be reasonably expected to become smoother, and

exhibit smaller differences between runs with different maximum depths, if the run’s duration was

extended.

3.6.3 Code coverage

Another dimension that can be inspected during the execution of the model is the code coverage. This

typically has a non-trivial performance overhead during checking and so leads to lower state counts,

as shown in Figure 3.25. The distribution of depths reached during the runs is also similar, shown

in Figure 3.26 with Table 3.9 showing the total number of traces explored. These remain consistent

75

3.6. Performance

Figure 3.24: Distribution of depths covered. Most of the depths reached for 1 controller do
not encounter the limit, but a large proportion still do. A majority of traces with 2

controllers encounter the limit implying a larger limit could be useful for exploring deeper
traces.

in the impact of the max depth setting, with a larger maximum depth leading to a slower rate of

state exploration and fewer execution traces reaching the maximum depth. The performance of code

coverage tracking shows the challenges involved in checking that the model has good coverage due

to the performance overhead involved. I did not directly look at improving performance of the model

checking under coverage tracking, but improvements may be possible using other tracking methods.

By tracking the line coverage during the test execution the parts of the code may need more

coverage can be observed, as shown in Table 3.10. To increase coverage of the code the model would

need to be modified with new environmental operations, mutating statuses, and specifications to

directly target other areas. This is important to ensure that the model’s generated transitions represent

all of the possible behaviour for every resource. This is key for users to create new test cases and initial

states to explore, increasing confidence in the checked code.

76

Chapter 3. A model of orchestration

Table 3.8: Total number of traces explored during the runs presented in Figure 3.24.

Consistency Controllers Max depth Count
causal 1 100 907982
causal 1 200 84962
causal 2 100 507
causal 2 200 231
optimistic-linear 2 200 2066
optimistic-linear 2 100 4860
optimistic-linear 1 200 1211774
optimistic-linear 1 100 2485331
resettable-session 1 100 2545412
resettable-session 1 200 1077794
resettable-session 2 100 1091147
resettable-session 2 200 345341
monotonic-session 2 200 483420
monotonic-session 2 100 1388335
monotonic-session 1 200 1071528
monotonic-session 1 100 2304332
synchronous 1 100 2814623
synchronous 1 200 1637545
synchronous 2 100 1657867
synchronous 2 200 741649

3.7 Conclusion

In this chapter I have proposed a lightweight formalism of the orchestration problem and presented

an abstract model for reasoning about this problem. Based on this abstract model I have presented

Themelios, a concrete implementation of the model based on Kubernetes and shown how properties

can be expressed over the represented states. Notably Themelios performs model checking directly on

the code of the model, and so the model components can be directly deployed, avoiding the problem

of divergence between specification and implementation. I have also presented how Themelios can

be used to check different consistency models for a key-value store for the global state through being

able to vary the consistency of the global state’s history. Using this model I have reproduced a known

stale reads bug from Kubernetes, increasing confidence that the model is accurate and useful. Finally,

I presented performance results for the model checker’s execution, showing the impact of different

consistency models.

77

3.7. Conclusion

Figure 3.25: States generated per run with coverage tracking, which lasts 60 seconds,
aggregating by number of each controllers and consistency model and limiting the max
depth. More controllers adds more complexity, decreasing the number of states that are

explored. More complex consistency models also reduce the total number of states
explored.

The formalism of the orchestration problem presented now means that orchestration is not

underspecified, particularly coupled with the abstract model. The properties explored with the model

show that it is feasible to begin to provide guarantees for developers and operators. The model’s

ability to work with different state consistency models enables further exploration into the underlying

infrastructure used for supporting orchestration platforms in different environments.

78

Chapter 3. A model of orchestration

Figure 3.26: Distribution of depths covered with coverage tracking, across all test runs
aggregated by consistency model and controllers and limiting the max depth. Most of the

depths reached for 1 controller do not encounter the limit, but a large proportion still do. A
majority of traces with 2 controllers encounter the limit implying a larger limit could be

useful for exploring deeper traces.

79

3.7. Conclusion

Table 3.9: Total number of traces explored during the runs presented in Figure 3.26.

Consistency Controllers Max depth Count
causal 1 100 6345
causal 1 200 1066
causal 2 100 469
causal 2 200 230
optimistic-linear 2 200 1312
optimistic-linear 2 100 2984
optimistic-linear 1 200 4341
optimistic-linear 1 100 9145
resettable-session 1 100 9648
resettable-session 1 200 3820
resettable-session 2 100 4629
resettable-session 2 200 1374
monotonic-session 2 200 1748
monotonic-session 2 100 5301
monotonic-session 1 200 4007
monotonic-session 1 100 8601
synchronous 1 100 10697
synchronous 1 200 6397
synchronous 2 100 5996
synchronous 2 200 2750

Table 3.10: Coverage by controller. Total lines is all the lines measured by the coverage
engine.

Controller Covered lines Total lines Percentage
Scheduler 52 78 66.67
Job 339 760 44.61
ReplicaSet 151 204 74.02
Deployment 579 909 63.70
Statefulset 470 687 68.41

80

Chapter 4

Orchestration for the public cloud

In the previous chapter I presented a model for orchestration platforms, in particular being able to

change the consistency model underlying the global state. One consistency model of note was the

optimistic linear model, enabling systems to be optimistic about their writes. This consistency model

is particularly suited to public cloud deployments, where regulated parties cannot trust the hosts to

the same extent as in a private cloud. Waiting for requests to be processed in this system could lead

to attackers delaying requests, whereas being optimistic and checking in later can ensure progress is

made. This chapter discusses the development of a secure key value store, built on trusted execution

environments for the public cloud, to provide confidentiality at the core of the cluster, using the

optimistic linear consistency model.

The code supporting this chapter’s work is available at https://github.com/microsoft/LSKV¹⁷.

4.1 The public cloud

In Kubernetes, all cluster state, including configuration and secrets, is stored in a single etcd cluster [89,

90]. Attackers with access to the state in the etcd cluster can manipulate resources to cause arbitrary

behaviour in Kubernetes. Since etcd forms the core of the flow of requests within Kubernetes [75] it

must provide high performance, correctness, and reliability.

¹⁷ Though under the Microsoft organisation the work was completed by me during an internship.

81

https://github.com/microsoft/LSKV

4.1. The public cloud

The different trust model of the public cloud leaves the data in etcd vulnerable in-memory, despite

best-practices and encryption in-transit and in-storage. Unfortunately, the cloud providers operating

the datacenters are not without security incidents [35, 103–105]. Gaining privileged access to machines

provides malicious actors the opportunity to read data right out of the hardware.

Confidential services can be operated in the public cloud using Trusted Execution Environments

(TEEs) [109]. TEEs such as Intel SGX [70], Intel TDX [72], AMD SEV-SNP [79], Arm TrustZone [50] and

Arm Realms [27] provide the hardware facilities necessary to support confidential computing. Confi-

dential computing protects data and code in-memory using attested TEEs, preventing unauthorized

access or modification during execution, even if the attacker has privileged access to the machine [49,

112]. Newer Intel processors feature more memory for SGX enclaves [71], removing the historical

limitations of running larger applications in TEEs. Additionally, Intel TDX and AMD SEV-SNP have

support for running confidential VMs [33, 37, 46, 80], providing a new avenue for running larger

systems in confidential environments.

Despite the new support for running VMs in TEEs, performing a lift-and-shift of existing applica-

tions to fit them into this new threat model is not straightforward. Continuing to trust the host can

lead to the applications’ guarantees to being broken, such as rollbacks of state occurring. However,

new systems designed for TEEs are not trivial to build. Work tackling aspects of building on TEEs

has been presented covering untrusted host time [125] and storage [85] but they are still challenging

to combine together into systems. Additionally, the applications themselves are complex, requiring

consensus [68, 107] and other mechanisms to be correct for proper functioning.

Existing systems thus still lack adaptation to the new threat model. For instance, they may not

give end clients a means of validating the operations performed by an intermediate server, such as the

Kubernetes API server, leaving them requiring blind trust.

This chapter presents the Ledger-backed Secure Key-Value store (LSKV). LSKV provides confi-

dential operation with an etcd-like key-value API including range queries, transactions, leases and

watches. It provides a secure foundation, lowering the barriers to building trustworthy systems. This

chapter provides the following contributions:

1. Motivating why existing datastores are not suitable for simple lift-and-shift operation, §4.2.

2. A route to transition to confidentiality with LSKV, avoiding the downsides of lift-and-shift, §4.3.

3. New primitives for waiting for optimistic requests to be processed and enabling clients to gain

trust in intermediary services, §4.4.

4. LSKV’s competitive and, for some workloads, improved performance over etcd, §4.5.

82

Chapter 4. Orchestration for the public cloud

Table 4.1: Overview of etcd deployment strategies. LSKV provides all the desired features
with a smaller Trusted Computing Base (TCB). HW: Hardware; O: Operator; OS:

Operating System.

Sy
st

em

En
cr

yp
te

d
m

em
or

y

R
an

ge
 q

ue
ri

es

Pr
oo

f o
f w

ri
te

s

R
ol

lb
ac

k
pr

ot
ec

tio
n

Tr
us

te
d

co
m

pu
tin

g
ba

se

etcd ✓ HW + O + OS
etcd + client V encryption ✓¹⁸ ✓ HW + OS
etcd + client KV encryption ✓¹⁹ ²⁰ HW + OS
etcd + confidential VM ✓ ✓ HW + OS
LSKV Virtual ✓ ✓ HW + O + OS
LSKV SGX ✓ ✓ ✓ ✓ HW

4.2 Motivation

Etcd is run in cloud and on-premises environments; Table 4.1 outlines some deployment configurations

and their properties. Ordinarily, etcd provides encryption of data in-transit, via TLS connections, and

defers encryption of data at-rest to the underlying filesystem [55]. As memory is unencrypted, this

leaves etcd deployments in the cloud vulnerable, given that the encryption keys reside in-memory.

Clients that do not trust etcd with the confidentiality of their data can encrypt values themselves

before sending them to etcd, known as client-side encryption [11]. Keys can be encrypted with order-

preserving encryption [41] to retain the ability to perform Range queries. However, this merely

moves security and key-management concerns from the cluster operators to the clients, adding more

complexity.

In order to provide confidentiality of data during execution etcd may be run in confidential VMs:

the lift-and-shift approach. Whilst this provides a simple solution to securing keys and values during

execution, the trust model of etcd itself remains, heavily reliant on the host OS. This leaves it vulnerable

to host-controlled attacks such as rollbacks, for example as explored in the context of Engraft [130],

focusing on the Raft protocol on which etcd is built. For instance, flushing writes to disk should not

¹⁸ Only values are encrypted, not keys or other data.

¹⁹ Only keys and values are encrypted, not other data.

²⁰ Range queries would be possible if using order-preserving encryption.

83

be on the critical path as the host can respond maliciously, invalidating durability guarantees. Shims

could be used to add some level of rollback protection but they all have downsides in the form of

performance impacts, complexity or overheads [25, 100, 106]. Thus, a lift-and-shift of etcd can break

durability guarantees, making etcd not suitable to be run in confidential environments.

Since etcd clusters store sensitive state, attackers with the ability to manipulate the values can

perform arbitrary operations in a Kubernetes cluster. This could lead to running malicious workloads

to exfiltrate data and disrupt services.

Aside from attacking etcd directly, since clients interact with etcd through the API servers, this

exposes another attack vector. An attacker could control an API server and mutate requests from the

client to perform arbitrary operations under the guise of the client. This would be difficult for the

clients to notice, particularly when the attacker ensures a consistent view of the system is presented

to the clients.

4.3 Overview

LSKV is a distributed key-value datastore for securing confidential data in the cloud, built on the

Confidential Consortium Framework (CCF) [111]. It offers API compatibility with etcd with adapta-

tions to fit LSKV’s threat model. It provides solutions for untrusted intermediaries that terminate

TLS connections, as well as an incremental adoption model, to aid users transitioning to confidential

datastores in the cloud.

4.3.1 CCF

CCF is a framework for building distributed, highly-available, confidential applications. It provides

application developers with key-value maps for storing state in a ledger, and dispatches requests to

the application logic based on a REST API model. The integrity of the ledger is guaranteed by a Merkle

Tree [101], periodically signed by the current leader node. The ledger is shared across nodes, replicated

using a protocol based on a variant of Raft, requiring signatures of the Merkle Tree root to be replicated

before values are considered committed. Application nodes can run on either a virtual TEE or Intel

SGX. The virtual TEE is not confidential and can be run in on-premises production environments

where operators are trusted. SGX is the confidential production TEE, supporting confidential operation

and remote attestation, suitable for running in the cloud.

84

Chapter 4. Orchestration for the public cloud

Table 4.2: API outline.

RPC etcd LSKV
Range ✓ ✓
Put ✓ ✓
DeleteRange ✓ ✓
Txn ✓ ✓
LeaseGrant ✓ ✓
LeaseRevoke ✓ ✓
LeaseKeepAlive ✓ ✓²¹
Watch ✓ ✓²¹
Receipts ✓

LSKV is an application built on CCF, leveraging its features, but several of my contributions from

LSKV have been upstreamed as part of this work.

4.3.2 Data model and API

The LSKV API mimics that of etcd, aiming for wire-compatibility, but includes extensions: the addition

of fields to response headers and the addition of a write receipt endpoint. Table 4.2 outlines the API.

LSKV accepts requests over either HTTP with JSON payloads or gRPC with protobuf payloads. This

enables flexibility in how applications interact with LSKV from the outset without requiring extra

dependencies.

LSKV maintains a single key-space. Updates to the key-space are versioned with a revision counter,

incremented for each update. The revision can be used to query the store at a historical point in time

(historical reads). Response values feature the revision that they were created at (create_revision),

last modified at (mod_revision), and the number of updates to the value since creation (version).

Values can have associated leases for tracking client liveness and distributed coordination such

as leader election. The lease is created by a client and is assigned a time-to-live, which the client can

refresh. A lease can be associated with multiple keys and when the lease expires or is revoked the

keys will be deleted. A lease expires if the time-to-live passes without being refreshed, and can be

manually revoked by clients. As there is no way to reliably schedule work in the TEE, keys with expired

leases are deleted during a compaction call. A compaction call is used to remove old revisions in the

datastore, and is typically initiated by a trusted client. In the meantime, after expiration but before a

²¹ Requires a patched CCF.

85

4.3. Overview

Table 4.3: Response header fields.

Name Description
Cluster ID Cluster-wide identifier
Member ID Per-node identifier
Raft term Latest Raft term
Revision Latest revision
Committed Raft term²² Raft term of last commit
Committed revision²² Revision of last commit

compaction, leases are soft-deleted — they will seem to be expired from the client’s perspective but

still retain storage.

Clients are also able to watch values in LSKV, staying up-to-date without polling. They can start

watching from the latest revision and be streamed updates to specified keys as they occur. Alterna-

tively, a client can start watching from a historical revision, for instance if the client had to restart

but has some stored data and needs to catch-up from a known point. LSKV only sends updates to

clients for values that have been committed in the cluster. Due to the current lack of support in CCF

for bidirectional HTTP2 streams [97], LSKV requires a patched version of CCF, which adds some basic

support for bidirectional HTTP2 streams, for Watch requests to work.

All responses from the LSKV cluster come with a response header, the fields of which are outlined

in Table 4.3.

4.3.3 Threat model

LSKV has three categories of actors, inherited from CCF: operators that manage the running of the

application instances, governors that are responsible for management of the running service based off

of a JavaScript constitution containing available actions, and clients that call application endpoints,

outlined in Figure 4.1.

Operators are untrusted, typically being a cloud operator when deploying LSKV to the cloud,

and are assumed to have complete control over the host running the application instance. They can

perform denial of service attacks against the LSKV service by turning machines off, or interfering with

network traffic. LSKV does not mitigate these attacks and so cannot maintain liveness in these cases.

Additionally, LSKV does not obfuscate access patterns, mitigate timing attacks, or mitigate other side-

channel attacks. LSKV mitigates operators interfering with reads and writes to storage by not relying

²² Unique to LSKV.

86

Chapter 4. Orchestration for the public cloud

Client

Governor

Server

LSKV

LSKV

LSKVCloud

Operator

Figure 4.1: High-level view of a typical 3-node cluster. Arrows indicate interactions
between entities. The client may be able to connect directly to the LSKV nodes.

on the data to be persisted as part of the guarantees it provides, notably protecting against storage

rollback attacks provided that at least a majority of nodes remain live at the same time.

Persisted data is encrypted with keys stored in the TEE and so is not readable by the operator,

only the governors can get the key to decrypt. LSKV uses host time for leases and does not mitigate

against the time moving forwards abnormally, however time is limited to be monotonically increasing

during a node’s lifetime. This is a known limitation of the system and would require support in CCF

to work around.

When deployed to a system with a secure TEE LSKV makes standard assumptions about running

in a TEE, particularly that code is integrity protected and memory is encrypted and integrity protected.

For SGX there are a number of vulnerabilities [115], the compile-time mitigations are applied to LSKV

where available. Attested TLS is used for node-to-node communication to ensure peers are running in

TEES, and using TLS for client-to-node communication.

Governors are trusted in aggregate: they propose actions from the constitution and these are

voted on by other governors. A proposal must pass a vote threshold before being applied, configurable

in the constitution. The actions available to governors surround node cluster membership, governor

membership, service management (opening the service, rotating certificates), and recovery of the

service. LSKV provides a simplified constitution enabling single-governor actions for simplicity but

this is configurable. All governance interactions are signed and available publicly in the ledger.

Clients are untrusted apart from using the application endpoints and other read-only endpoints

that do not expose sensitive information. An open security model is assumed for clients for simplicity:

those that can provide a valid client certificate, previously generated by governors, for the service can

use all the functionality, including reading and writing any data in the store.

87

4.3. Overview

4.3.4 Consistency model

LSKV provides session consistency, within a TLS session, for client operations. This ensures that

clients are guaranteed to read their writes made in the same session. Clients can extend this across

sessions by using the revision field supplied in the response header. However, writes are acknowledged

optimistically by the leader, not waiting for commit through consensus, replication to other nodes then

happens asynchronously. To ensure that a write has been committed in the cluster to a majority of

nodes, the client must wait for the replication, though they are not required to. This consistency model

mirrors the optimistic linear consistency model used in the model checking in Chapter 3. Reads can

be served at any node. If a client performs a read at the current leader node, or a previous leader node

that has not caught up with the cluster, then optimistic values will be visible. However, clients can

check whether the read values have been committed, though this still lacks a guarantee of freshness.

If clients only want to see committed values then they can use historical reads, supplying the latest

transaction ID that they have observed.

If this separation of writes and commits is undesirable, then a trusted proxy can be used as an

intermediary between clients and the datastore nodes. This proxy then has the job of relaying requests

to the cluster and then waiting for commits itself before returning to clients.

4.3.5 Fault and durability model

LSKV assumes crash-fault tolerance assuming a majority of cluster nodes are available, otherwise

disaster recovery is needed. Disaster recovery is a CCF concept, and as such is not discussed in detail

here, but it requires creating a new cluster based off the latest snapshots from the old cluster. Nodes

do not operate in a Byzantine manner due to the code integrity protection of the TEE.

Since LSKV does not trust the host to persist values to disk, data is not eagerly persisted before

responding to clients. Before committing values CCF flushes writes to the disk, though this is not

trusted and so durability of committed operations cannot be guaranteed. This is a fundamental

limitation of the threat model: without trusting the host to persist data durability of this form cannot

be guaranteed. This equally applies to lift-and-shift systems which have their durability guarantees

broken due to the different threat model applied in this context.

Clients wanting to ensure values are available after restarts, of the node they are interacting with,

should ensure that the transaction for their operation has been committed to a majority of nodes,

88

Chapter 4. Orchestration for the public cloud

and thus available in-memory on them. Different strategies can be used for this mechanism, described

in §4.4.2.1.

4.3.6 Incremental adoption

There are two ways LSKV supports incremental adoption: TEE flexibility and write receipts.

4.3.6.1 TEE flexibility

Starting from an existing deployment of etcd in a private datacenter, Figure 4.2a, the operator is

assumed to be trusted, TLS is used for network communication and data is being stored on an

encrypted disk. The keys for the TLS communication and filesystem encryption are currently stored

in unencrypted memory. Deploying this configuration to the public cloud, even running etcd in a TEE,

would not fit the threat model as discussed previously. Instead, the aim is to transition the existing

service to LSKV incrementally to gain confidence and operational expertise. Firstly, the TEE flexibility

within LSKV is used, allowing it to run in multiple target environments. This enables LSKV to be

deployed in a virtual TEE, a standard process, in the private datacenter as shown in Figure 4.2b. This

retains the same trust in the operator, and the same conditions for everything else but gives clients

a chance to update to any changes required, perhaps waiting for commits. It additionally gives the

operators a chance to test performance, stability and any automated management of their service with

it being minimally different from the previous setup. Later, once operators have confidence in operating

the service, they can begin transitioning to a deployment of LSKV in the public cloud using the SGX

TEE. This gives the same setup, but now the operator is untrusted, as shown in Figure 4.2c. Since the

operator is untrusted and LSKV is running in a secure TEE it uses attested TLS and the private keys

are stored securely in the enclave memory.

4.3.6.2 Write Receipts

LSKV provides write receipts for detecting malicious intermediary servers, shown in Figure 4.3. The

server is assumed to terminate TLS connections and perform some intermediate processing on the

data. After performing some request including writes to the intermediate server, clients can request

a receipt for the writes. This receipt provides offline proof that the write was committed to the LSKV

cluster, and can be used to verify the actions performed by the untrusted server. The receipt can also be

used as proof to other parts of a system that the write request took effect, to ensure that they continue

working from a successful state.

89

4.3. Overview

TLS

etcd
TLS key

FS key
Memory

Encrypted storage

(a) Etcd deployment in a private datacenter.

TLS

LSKV
TLS key

FS key
Memory

Encrypted storage

(b) Switching to LSKV in a virtual enclave, still in a private datacenter.

Attested TLS

LSKV
TLS key

FS key

Encrypted storage

Memory

(c) Deploying to a public cloud using LSKV on SGX.
Figure 4.2: Architecture and trust during incremental adoption. Green is trusted, yellow is
using encryption but not necessarily integrity protected, red is untrusted. The background

represents the trust status of the environment.

Client Proxy LSKV

Client Proxy LSKV

Put(Alice, £500) & GetReceipt()

Put(Bob, £500) & GetReceipt()

Bob = £500

Alice = £500

Signed receipt for Bob = £500

Signed receipt for Bob = £500

Invalid Receipt!

Figure 4.3: Example of a malicious proxy being detected with write receipts.

90

Chapter 4. Orchestration for the public cloud

LSKV

CCF

Host

Endpoint handlers

KVStore LeaseStore Historical index

Maps Indexer

Merkle Tree Ledger Consensus

Disk Clock ticks

Figure 4.4: LSKV internals and their interactions with CCF and the host.

While write receipts only deal with writes, receipts for reads could be obtained by clients issuing a

transaction consisting of a dummy write and then a read. This dummy write ensures that the operation

ends up in the ledger, and so a receipt can later be generated for it.

4.4 Implementation

LSKV is implemented as a C++ application on CCF, in ~2,100 lines of code, with the constitution

forming another ~1,200 lines of JavaScript. An additional ~2,500 lines of code were upstreamed to

CCF.²³ The upstreamed code included adding support for remove on the red-black tree map, adding

view history to improve watching of transaction statuses, support deletion in indices, and support

post-commit execution. Figure 4.4 highlights the separation of functionality offered by CCF and that

which LSKV implements.

Requests are routed by CCF and handled by registered endpoint handlers. These handlers run

only on a single thread and perform the primary business logic of updating data in the store using

abstractions over CCF maps. After the handler completes, mutations are stored in the ledger. When

operations are committed they are used to populate the historical index in LSKV. This historical index

is then used to serve historical Range requests.

²³ The list of merged pull requests made by me is available at https://github.com/microsoft/CCF/pulls?q=is%3Apr+
author%3Ajeffa5+is%3Amerged.

91

https://github.com/microsoft/CCF/pulls?q=is%3Apr+author%3Ajeffa5+is%3Amerged
https://github.com/microsoft/CCF/pulls?q=is%3Apr+author%3Ajeffa5+is%3Amerged

4.4. Implementation

struct Value {
 std::vector<uint8_t> data;
 int64_t create_revision;
 int64_t mod_revision;
 int64_t version;
 int64_t lease;
}

Listing 4.1: C++ implementation of a stored value.

4.4.1 Internals

4.4.1.1 Response headers

Each response from LSKV comes with a response header. The fields contained in a response header are

outlined in Table 4.3. The cluster ID is a hash of the service’s public key for the cluster, only changing

for a cluster during disaster recovery. The member ID is a hash of the node’s public key, making it

unique to the node that handled the request. The Raft term along with the revision, a global counter

updated with each operation, form the transaction ID for the request. The Raft term itself indicates the

number of elections that have occurred in the cluster.

Transaction IDs identify operations and can be used to check the commit status. Only requests that

mutate the store have an associated transaction ID. Requests that do not mutate the store, have a Raft

term and revision filled in with the same values as found in the committed Raft term and committed

revision, respectively. The committed Raft term and committed revision form the transaction ID that

was last committed at the time of handling the request. This committed transaction ID is primarily

useful to determine the commit status of pending transactions, indicating whether they have been

through consensus.

4.4.1.2 Maps

Internally, LSKV stores key-value and lease data in CCF maps. The maps store a byte vector for a key

and a JSON serialized Value struct (Listing 4.1) as a value. The data field is the bytes of the value that

the client sends in a Put request. The version is the number of updates to the value since its creation

and the lease is the ID of a lease which may be associated with the value. The create_revision is

the revision that the value was created at and the mod_revision is the revision that the value was last

modified at.

When executing a request LSKV operates on an internal CCF transaction which is a snapshot of the

key-value store. However, the transaction’s ID is not known until after the execution of the application

92

Chapter 4. Orchestration for the public cloud

logic so the revision fields cannot be entered correctly. Instead, LSKV lazily computes the values of the

create_revision and mod_revision when loading a value from the map. On creation of a new value

in the map LSKV sets both revisions to 0. Then, on subsequent operations, the value is first read out

of the map and updated to set the revisions to the correct values. The map is queried for the ID of the

transaction that last modified this key in the map. The transaction ID’s revision is then used to set the

create revision (if it was 0) and the mod revision of the value. This means that the revision fields in

the values stored in the ledger lag behind by one update.

4.4.1.3 Consensus and persistence

Once internal CCF transactions have been executed on the leader node they are queued for asynchro-

nous replication to other nodes. Once internal CCF transactions have been replicated to a majority of

nodes along with a signature they are deemed committed. The state of the transaction will then reflect

this when queried by clients. Whilst items are replicated through consensus they are also added to

the ledger, encrypted and queued to be persisted to disk asynchronously. By default LSKV stores all

entries in private CCF maps which are stored encrypted in the ledger.

4.4.1.4 Historical index

After transactions have been committed with the other nodes they cannot be rolled back in the course

of normal operation. Thus they are added to the historical index, using a similar structure as for current

data, and is used for historical Range requests and Watch streams in LSKV. It is backed by CCF’s

indexer which periodically applies the latest committed transactions to the historical index, prompted

by a tick from the host’s clock. This process is not synchronous with consensus and so the historical

index can lag behind the latest committed values.

4.4.1.5 Public ledger entries

Since LSKV stores all entries in private CCF maps by default, both keys and values are encrypted

on-disk. However, governors may want some keys to be stored unencrypted in the ledger to enable

auditability of non-sensitive data. Governors can alter this by making and accepting governance

proposals which are publicly auditable. Once the proposal is accepted, logic is executed to make new

writes to keys with the proposed prefixes publicly readable in the ledger. On top of these options,

clients can still perform their own encryption if the clients have secret values with which they do not

trust the governors, however this should be rare as the governors should be within the trust boundary.

93

4.4. Implementation

Table 4.4: States of a transaction. Terminal states bolded.

State Description
Unknown Node is unaware of the operation
Pending Operation is awaiting consensus
Committed Operation is committed
Invalid This operation cannot be committed

4.4.2 Consistency model

LSKV is optimistic when processing requests for the latest state, allowing clients to observe values

that have not yet been committed, but gives clients the option to be more pessimistic. It is pessimistic

when processing requests for historical values, guaranteeing that readers observe a committed view

of the data. This split consistency mechanism enables the clients to leverage the one most useful to

them and their use-case. In practice this means that:

1. After committing mutations, the leader orders the transaction with other executing transactions,

assigning it an ID, acknowledges to the client, and then sends the operation through consensus.

2. The client can check on the status of a transaction ID to wait for it to be committed.

3. When reading without a revision set, the client may observe values that have not been committed.

4. Clients can specify a revision, obtained from the response header in previous interactions with

LSKV, to only observe committed values when reading.

4.4.2.1 Optimistic (latest data)

LSKV provides session consistency, specifically read your writes, within a TLS session, for client

operations. These operations are optimistic: they return to the client before waiting for commit. This

means that writes are processed at the leader node without communication with the other nodes in

the cluster before returning to the client. Reads are processed using the data available at the node the

client connects to.

The writes at the leader node are asynchronously sent to backup nodes through CCF’s consensus

layer, which performs batching based on configurable count and time intervals. Meanwhile, the client

gets a response indicating the revision and Raft term that the write will be present at, if it is successfully

committed through consensus. Table 4.4 describes the states that a transaction can be in. With the

revision and Raft term, the client can employ different strategies for checking that a write has been

committed, outlined below. Reads can be serviced by any active node in the cluster.

94

Chapter 4. Orchestration for the public cloud

Table 4.5: Comparison of commit checking strategies in terms of number of messages to
the service. 𝑛 is the number of requests waiting for commit, 𝑡 is the number of Raft term

changes that have occurred during the execution.

Strategy Best case Worst case
Naive 𝑂(𝑛) 𝑂(𝑛)
Poll last 𝑂(1) 𝑂(𝑛)
Poll committed 𝑂(1) 𝑂(𝑡)
Poll with raft history 𝑂(1) 𝑂(1)
Returned committed 𝑂(1) 𝑂(1)

Since write requests must be served by a leader, write requests issued to a non-leader node are

forwarded to the current leader for execution. Read requests can be served at any active node.

Despite LSKV being optimistic about consistency, some clients may want to wait for values to

be committed before continuing, particularly for batch operations. To support this, LSKV supports

methods for checking the status of an operation, given the ID. Clients can use the following strategies

to flexibly wait for operations to be committed based on their usage pattern. Figure 4.5 shows an

example series of transaction IDs and the Raft term history, Table 4.5 summarizes relative performance.

Naive. Poll the transaction status endpoint for each ID until a terminal status is obtained for each.

This places extra load on the cluster but makes for simple client logic.

Poll last in Raft term. Locally filter the IDs to the last in each Raft term and apply the naive

strategy with these. If a transaction ID turns out to be invalid then discard it and poll the previous ID

for that Raft term. This strategy is more efficient but requires introspection of the transaction IDs.

Poll latest committed transaction. Poll the latest committed transaction ID in the cluster. From

this ID locally calculate the status of each transaction ID, provided that they are all in the same Raft

term. If a change of Raft term is observed then fall back to one of the previous strategies.

Poll latest with Raft term history. Polling the latest committed transaction can be coupled with

the Raft term history, which contains the first transaction ID in each Raft term, to handle Raft term

changes efficiently. This is particularly efficient when the cluster changes Raft terms frequently and it

reduces load on the cluster, aiding in faster recoveries. The Raft term history required for this strategy

was upstreamed to CCF as a part of the LSKV work.

Using returned committed IDs. Rather than polling the cluster for statuses and the last com-

mitted ID, the ID of the last committed transaction can be used from the response header. This works

best in times of stability, when the Raft term is not changing but can be coupled with periodic refreshes

of the Raft term history. This strategy is most efficient when making a large number of requests.

95

4.4. Implementation

Figure 4.5: Timeline of Raft term changes and revisions. Annotated vertices show Raft term
history entries.

4.4.2.2 Pessimistic (historical data)

Compared to requests operating on the latest state, requests working on the historical state of the

store can only observe committed values. Reads are served from the historical index which tracks the

committed values and does not contain optimistic values.

Separating historical index updates from consensus rounds keeps them off the hot path, keeping

optimistic operations fast at the cost of staleness in historical queries. Each node maintains their own

historical index so different nodes may have different staleness profiles. Since every response from

LSKV includes the revision and Raft term of latest committed item, clients can use this as an indication

of the latest state available in the historical index across nodes with which they interact. If a client

requests a value at a revision that is committed but not yet replicated to a node, and so not in that

node’s historical index, then the node operates as if that revision does not exist yet. From the returned

response header the client can then determine the validity of the transaction ID they are using with

respect to that node.

4.4.3 Auditability

When a value is committed in CCF there is a corresponding signature over the internal Merkle Tree

state. This signature is stored in the ledger along with the entries used to form the Merkle Tree. Since all

operations are recorded in the Merkle Tree a valid signature can be used to confirm that an operation

was committed. This signature also identifies the node that created it. These signatures are stored

publicly in the ledger, and can be used by all users with access to them to validate the ledger.

96

Chapter 4. Orchestration for the public cloud

4.4.3.1 Write receipts

Clients may not always be able to connect to LSKV nodes directly, instead interacting with an inter-

mediary such as the Kubernetes API server. These terminate TLS sessions, potentially aggregating

requests to the datastore or presenting their own API. However, clients must now trust the interme-

diate server to both handle their data safely and faithfully perform their operations. Preventing the

intermediate server from leaking confidential data is out of scope of LSKV but may be mitigated by

client-side encryption of values. It may be possible to run the intermediate server in a confidential

environment as well.

To avoid clients having to trust intermediary servers to faithfully perform their requests, LSKV

can provide unforgeable write receipts. These write receipts provide an end client with cryptographic

proof, to validate that the action it requested the intermediary to perform is what was executed at

LSKV, and the results of mutations have been committed to the ledger. To request a write receipt clients

submit a revision and Raft term (the transaction ID) of a previous request to a get receipt endpoint.

LSKV then fetches the receipt asynchronously, presenting it to the client once available. Receipts from

LSKV include a digest of the serialized request and response, which the client has possession of and

so clients can verify receipts themselves.

The structure of a write receipt is outlined in Listing 4.2. The node_id is the ID of the node that gen-

erated the receipt, cert is its public certificate. Fields under leaf_components form a leaf in the Merkle

Tree; the write_set_digest is a hash of the keys written to during a transaction, commit_evidence is

a per-transaction string that guarantees the transaction is committed, and claims_digest is a hash of

the custom claims made by LSKV. proof is a list of steps to successively combine with the calculated

leaf node to obtain the root of the Merkle Tree. The signature is the signature over the root of the

Merkle Tree. LSKV extends CCF’s write receipts by recording the serialized request and response as

custom claims when mutating requests are made. The hash of these claims is used in a receipt to prove

that a request was handled, and results of mutations from it are stored in the committed ledger.

Receipt verification is broken into three stages: confirming the claims digest is correct, checking

that the receipt is valid, and checking that the signing certificate is trusted. To calculate the claims

digest the client needs to calculate the SHA-256 hash of the protobuf serialized request and response,

removing the header field in the response as it is not filled in during transactions in LSKV and so is

not recorded in the claims. The client should then confirm their calculated value is the same as the

receipt-provided claims_digest. To check the receipt’s validity the client must rebuild the root of the

97

4.4. Implementation

node_id: "..."
cert: "-----BEGIN CERTIFICATE-----..."
leaf_components:
 write_set_digest: "..."
 commit_evidence: "..."
 claims_digest: "..."
proof:
- left: "..."
- right: "..."
signature: "..."

Listing 4.2: Structure of a write receipt in YAML.

Merkle Tree. They should hash the commit_evidence field and concatenate the write_set_digest,

hash of the commit_evidence, and the hash of the custom claims to produce the leaf. The leaf is then

combined successively with the proof elements, concatenating the current item to the left or right

as given and hashing the result, to calculate the root. Finally, the client should verify the signature

over the calculated root. To confirm that the node signing the receipt is trusted by the LSKV cluster,

a client should confirm that the service certificate of the cluster endorses the node certificate given in

the receipt.

4.4.4 Discussion

4.4.4.1 Incremental adoption

For users with current on-premises etcd deployments there is likely to be friction in switching to

other offerings due to having to change client-side code, operational infrastructure, as well as simply

requiring developers to learn new systems. The approach LSKV takes to these challenges is to extend

current systems, keeping core API compatibility, rather than creating new interfaces. This means that

client-side code needs only minimal changes in order to wait for commit, operational infrastructure

needs minimal changes due to the change in threat model, and developers only have to learn minimal

new features if they want to use them. This model aims to greatly accelerate the adoption of confi-

dential computing platforms, making them available to the masses. The approach taken by LSKV to

solve this problem is something that can be reflected in further systems design.

4.4.4.2 Optimistic consistency

Despite having broadly the same API as etcd, LSKV does differ in semantics, particularly with respect

to the acknowledgement of writes. However, this change does have benefits, notably in batch perfor-

mance. Clients wishing to perform batch operations, focusing on performance, can perform them

98

Chapter 4. Orchestration for the public cloud

against LSKV without having to wait for them to be committed at each point. Instead, clients can

perform their batch of operations and wait for the commit of them once they have all been performed.

LSKV also supports flexible strategies for working around leader elections during this batch. The

flexible waiting primitives that LSKV provides allow clients to choose their trade-off between consis-

tency and performance.

4.4.4.3 Untrusted servers

Whilst data confidentiality is a primary focus of LSKV, being able to build trust in systems is also a

key concern. Clients making requests to write data into LSKV, whilst trusting the intermediary with

the data may want confirmation and a guarantee that data was written into LSKV with a write receipt.

Write receipts can also be passed to other clients as proof that requests were performed and data

written back as expected.

4.5 Evaluation

To evaluate LSKV I first compare it with etcd, before exploring other factors of LSKV’s performance.

The following aspects are investigated:

1. LSKV’s performance compared to etcd, §4.5.2

2. LSKV’s horizontal scalability, §4.5.3

3. LSKV’s vertical scalability, §4.5.4

4. The impact of optimism, §4.5.5

4.5.1 Setup

All of the benchmark runs were performed in a cluster of virtual machines in Microsoft’s Azure

cloud, using the “East US” location. All machines in this cluster had the “Standard_DC4s_v3” machine

type, which equates to 4 vCPUs, 32GiB memory, with a premium SSD. They were running Ubuntu

20.04 for their OS. The machines have support for spawning Intel SGX enclaves, which are used for

LSKV running in SGX mode. Datastore nodes were run on separate machines, with full access to its

resources, in the cluster and the benchmark clients run from a single separate machine in the cluster.

Mutating operations (puts and deletes) target the leader node at the start of the run, read operations

target all nodes in a round-robin fashion. For the SGX enclave build of LSKV the enclave is set with

NumHeapPages equal to 500,000. Each page is 4KiB so this equates to a maximum of 2GB of heap

99

4.5. Evaluation

Figure 4.6: YCSB workloads against etcd and LSKV on disk and tmpfs with 3 nodes, 20,000
requests per second. Sampled to 1,000 random points per repeat for each line for file size.

memory. The benchmarks were repeated 10 times and the plots presented summarise all the repeats.

LSKV is run with a base configuration of 2 worker threads and a signature interval of 1s.

100

Chapter 4. Orchestration for the public cloud

Figure 4.7: Total throughput of YCSB workloads against etcd and LSKV on disk and tmpfs
with 3 nodes, 20,000 requests per second.

Table 4.6: YCSB workload characteristics.

Workload Description
A Update heavy (50% reads, 50% updates)
B Read mostly (95% reads, 5% updates)
C Read only (100% reads)
D Read latest (95% reads, 5% inserts)
E Short ranges (95% scans, 5% inserts)
F Read-modify-write (50% reads, 50% RMW)

4.5.1.1 YCSB benchmark

The Yahoo! Cloud Serving Benchmark (YCSB) [51] is a standard benchmark for distributed storage

systems, presenting workloads based on real-world scenarios. A custom Rust implementation is used

in place of the original Java version to support the etcd protocol and the additions available for LSKV.

For the presented experiments the client uses 100 virtual clients to issue requests for all workloads

in a closed-loop fashion. Tests comparing with etcd target 20,000 requests per second and others

target 10,000 requests per second, all running for 10 seconds. All workloads use a Zipfian distribution.

Table 4.6 describes the workloads used. For LSKV, the writes do not include the time to wait for a

commit, representing batch workloads. The read-modify-write operation is implemented as a native

etcd transaction and all reads are serializable, as defined by etcd [12]. Only workload A is used for

experiments after the comparison with etcd (§4.5.2) as it represents a balanced mix of reads and writes.

4.5.1.2 Latency measurement

The latency records the time taken for a node to process a request and respond, measured at the client.

It is calculated from the time recorded at the start of sending the request and at the end of receiving the

101

4.5. Evaluation

response. This assumes that the connection has already been established and is maintained throughout

the run.

4.5.2 LSKV vs etcd

Lesson: Despite the differing internal mechanics of the etcd API LSKV maintains competitive performance

with etcd.

Figure 4.6 shows the latency and Figure 4.7 the total throughput results of YCSB workloads applied

to LSKV-sgx, LSKV-virtual and etcd version 3.5.4 with 3 nodes.

Presenting the same core API as etcd leads clients of LSKV to expect similar performance charac-

teristics. However, since LSKV performs more work to offer extra functionality a small overhead is

expected. Since SGX builds of LSKV include extra mitigations, lowering performance, this platform

is expected to be more severely impacted. Through all the YCSB workloads LSKV on disk keeps

competitive write performance with etcd, reads on etcd are lower latency and when run on tmpfs etcd

consistently wins. All of the datastores are able to attain the applied load rate, apart from LSKV-sgx

on workloads A and F which feature higher proportions of writes posing a higher CPU workload.

The writes to LSKV are optimistic and do not wait for commit before returning to the client,

round-tripping from the leader to followers and back, as the etcd writes do. This comes down to a

core trade-off in LSKV between commit latency and throughput as producing the commit signatures

is costly, explored more in §4.5.5. Despite this, as these systems are typically in their steady-state

during operation LSKV focuses on being optimistic, with clients falling back to wait for commit if their

needs require. Leader elections would lead to lower observed performance as uncommitted optimistic

operations will be lost.

It is clear to see the distinction between reads and writes for etcd in workloads A and F in the

stepped latency when running on a disk. This is less extreme with a smaller proportion of writes

occurring such as in workloads B, D and E and latency significantly improved in workload C due to

no writes. Coupled with the observation that this step is no longer present when running on a tmpfs,

this implies that writes in etcd are expensive primarily due to the requirement to flush to disk before

returning, in order to guarantee persistence. LSKV-sgx also sees a step-wise increase in latency for

large volumes of writes, even when running on a tmpfs indicating that the writes are incurring the

overhead of cryptography and added mitigations for SGX, as they do not synchronously flush to disk.

For write-heavy workloads, A and F, LSKV-virtual provides a much more consistent experience to

clients, due to the optimistic consistency model and the lack of need for mitigations and their associated

102

Chapter 4. Orchestration for the public cloud

Figure 4.8: Varying cluster size, 10,000 requests per second.

overhead. Given that LSKV does more work on each request at the leader node, processing the data to

the ledger and updating the merkle tree, these results align with the expectations.

Despite the significant impact of the mitigations for SGX newer platforms show that these

overheads could be significantly reduced, bringing performance closer to that of the virtual build. In

particular, AMD’s SEV-SNP poses an opportunity to run applications in a confidential environment

with a lower overhead of 2–8% compared to virtual, according to a joint analysis by AMD and

Azure [48].

4.5.3 Horizontal scalability

Lesson: LSKV scales horizontally like a typical Raft&based system.

The scalability of a distributed system is typically important in order to be able to support increased

redundancy and attain higher performance. This experiment, results shown in Figure 4.8, exposes the

scaling properties of LSKV under the YCSB workload A. The virtual mode is able to generally improve

latencies with more nodes. SGX mode gains improves latency with more nodes for reads, at the cost

of writes due to the extra replication requirements and the overheads of SGX mitigations.

4.5.4 Vertical scalability

Lesson: LSKV benefits in performance from vertical scaling through use of additional parallelism.

Figure 4.9 presents results from varying the number of additional worker threads used for a YCSB

workload A. Having one additional worker thread from the base of 1 worker thread reduces latency,

particularly at the tail for updates on both virtual and SGX. A second worker thread, also improves

103

4.5. Evaluation

Figure 4.9: Varying the worker threads, 10,000 requests per second.

latency however matching the number of worker threads to that of the number of cores present on the

machine degrades performance. This is expected due to CCF using two threads for the main processing

of transactions and networking.

4.5.5 Commit latency and receipts

Lesson: The level of optimism in the consistency directly impacts the commit and receipt delay.

Since LSKV provides optimistic consistency, Figure 4.10 highlights an example of how commits

lag behind during a benchmark run. The commits are seen at 1 second intervals (the vertical jumps

of the committed revision), the value set for the evaluation, though this is tunable for deployments.

This means that clients would have to wait at most approximately 1 second before their value gets

committed. The impact of increasing the signature frequency is shown in Figure 4.11, showing an

increase in latency of all aspects from the more frequent signatures. This is because the leader must

spend more of its time computing the signature instead of processing transactions.

This also has direct impacts on the latency for obtaining receipts, which require the operations to

be committed. Tuning the signature interval to be more frequent would reduce this latency but add

more load to the leader for creating the signatures. Receipts can be generated by non-leader nodes to

aid in handling the extra computation.

Once clients obtain a receipt they need to verify it offline. To evaluate this I created a benchmark

using the CCF Python library for receipt validation. A hard-coded receipt was used, along with service

certificate to check the claims were correct, the signature was valid, and that the node certificate was

endorsed by the service certificate. This setup could achieve 541 verifications in sequence per second

104

Chapter 4. Orchestration for the public cloud

Figure 4.10: Commit progress during a single YCSB workload A benchmark run.

Figure 4.11: Varying the signature interval, 10,000 requests per second.

on a single machine. This is below the rate of processing requests by the LSKV leader, but would be able

to be performed on multiple machines in parallel, enabling higher throughput than on a single node.

4.6 Related work

4.6.1 Embedded datastores

FastVer [26] extends Faster [44], an embedded concurrent and integrity-protected key-value store, with

a verify method for data integrity based on a Merkle Tree. Being embedded, Faster does not offer fault

tolerance itself, leaving this to the wrapper program, unlike LSKV that handles fault tolerance and

replication natively. Faster leverages concurrency heavily compared to LSKV which handles core logic

105

4.6. Related work

on only a single thread. LSKV internally uses CCF’s Merkle Tree which, as demonstrated by FastVer,

can alone reach only 100,000 operations per second, working purely in-memory on a single thread on

a virtual TEE.

ShieldStore [81] and Precursor [102] work around the old limitation that SGX enclaves had very

limited memory available, but as this limitation no longer exists regular in-memory data structures

can now be used.

4.6.2 Confidential distributed building blocks

T-Lease [125] presents a distributed lease primitive, similar to those provided by LSKV, that works on

untrusted time without violating the properties of a lease. LSKV does not protect the lease properties

directly, using the host-provided time instead. T-Lease would pose a good further extension to LSKV,

including generalizing it to cross-platform implementations.

Treaty [56], Engraft [130] and Enclage [120] all implement components of building distributed

confidential applications, covering transactions, consensus, and storage respectively. Treaty manages

distributed transactions over multiple nodes using two-phase commit, whereas LSKV executes trans-

actions on a leader node, replicating the results through a variant of Raft. Engraft implements Raft over

nodes running TEEs, offering a reusable Raft implementation. This Raft implementation is another

variant of Raft compared to CCF’s but tolerates the same number of node failures: 𝑓 out of 2𝑓 +

1 nodes. Enclage implements a performant, encrypted storage engine designed to leverage enclave-

native concepts, but does not cover data integrity. LSKV’s backing ledger stores private data encrypted

with a ledger key and persists integrity-protected files to disk.

VeritasDB [119] provides a proxy, that sits between unmodified clients and existing database

servers, to guarantee integrity to the client in the presence of exploits or implementation bugs in the

database servers. This is limited to integrity, not full confidentiality, of the data despite the proxy

running in an SGX enclave.

4.6.3 Distributed confidential datastores

Avocado [39] and EdgelessDB [121] are distributed datastores that present different persistence

guarantees. Avocado is in-memory only, similar to LSKV’s optimistic approach, not relying on data

to be persisted to disk. It supports integrity-protection of data and provides strong consistency for

client requests. Avocado does not support transactions, ranges, leases, watch requests or write receipts,

106

Chapter 4. Orchestration for the public cloud

and for a comparable YCSB setup achieves similar results to LSKV. EdgelessDB aims to be compatible

with MySQL databases whilst offering confidentiality of data during execution. It serves requests with

multiple cores and eagerly persists data to storage, unlike LSKV but does not support features such as

leases, watches and write receipts. Additionally, it does not support multiple nodes, sacrificing on the

availability of the service.

4.7 Conclusion

In this chapter I have presented LSKV, the Ledger-backed Secure Key-Value store. It builds on top

of CCF, keeping cloud operators out of the trust boundary when running in confidential TEEs but

can be run on-premises outside of a TEE for higher performance. It presents a familiar etcd-like API,

easing the transition of existing services, such as Kubernetes, to confidential environments. It provides

a consistency model suited to the trust boundary it works within, reducing reliance on the host, unlike

common lift-and-shift situations. It helps clients gain trust in intermediary services with write receipts

and achieves competitive performance compared to etcd, in a comparable setting.

Notably, the consistency model presented is an implementation of the optimistic linear consistency

model used in Chapter 3. This means that through checking the model we can ensure that the deployed

orchestration platform using LSKV can be fully supported. While checking that the implementation of

the consistency model in LSKV, inherited from CCF, matches the proposed model is not covered here,

it has been explored through the use of smart casual verification by the CCF team [66].

Overall, LSKV enables building trustworthy systems to work securely with critical data in the

cloud, offering a secure foundation for new confidential orchestration platforms, among other systems.

This enables more scenarios, particularly those under regulation, to begin to deploy orchestration

platforms into the public cloud, starting with being able to orchestrate workloads securely.

107

4.7. Conclusion

108

Chapter 5

Orchestration for the edge

Using the model of orchestration from Chapter 3, and employing the causal consistency model for

the state, higher reliability can be provided along with site-local, and independent operation for the

edge. To realise this as a datastore is not straightforward, primarily due to the interaction of conflicting

updates. This chapter describes a datastore based on CRDTs that handles conflicts, enabling operators

to use custom datatypes to support conflict-resolution for their application. Replication status is also

tracked, since replication occurs lazily, and is available to clients.

The code supporting this chapter’s work is available at https://github.com/jeffa5/mergeable-etcd.

5.1 The edge

More compute resources are becoming available near the edge of the network, leading to an increasing

interest in deploying services there. These services can perform aggregation of back-hauled data closer

to the edge, reducing the volume of data to be sent to the cloud as well as offering clients more local

operations [86]. They can typically be deployed in mini datacenters [45] — small, mostly ISP operated,

compute sites. With different sites being geographically distributed, networks between edge sites

can have higher latency than intra-datacenter communication coupled with increased likelihood of

network partitions. This is further exacerbated by resource limitations at each site, requiring efficient

use of those resources.

109

https://github.com/jeffa5/mergeable-etcd

5.1. The edge

Resource aggregation is critical to this environment, exploiting the numerous but geodistributed

resources each site offers. Aggregating sites into a larger cluster enables running services with higher

availability. A single large cluster also eases management and operation of the services, compared to

multiple smaller clusters, offering them higher availability across sites through efficient orchestration.

Etcd is a distributed key-value store, assuming reliable, low-latency, network links between replicas

which is not the case when replicas are distributed across different edge sites. Due to its critical place

in many systems, such as Kubernetes, and interest in deploying them to the edge, etcd needs to be

deployed there too, despite being unsuitable for these use cases. In fact, etcd has already been shown

to have scalability limitations under best-case scenarios in Kubernetes [75], which would only be

exacerbated at the network edge with its higher latency cross-site links. Other applications using etcd

are also bounded by its ability to tolerate higher latencies and network faults, impacting scalability

and reliability [57–60].

In the process of analysing and deriving requirements from the edge environment, this chapter

presents the design and implementation of two successive adaptations to etcd: mergeable&etcd and dis&

merge trading linearizability [65, 128] for causal consistency [93, 98, 128] with Conflict-free Replicated

DataTypes (CRDTs) [95, 118]. These target the edge environment, maintaining a similar API to etcd

to minimise programming model differences and thus respective changes in the systems built around

etcd. They explore two different points in the design space, mergeable&etcd focusing on maintaining

compatibility with etcd and its linear history, and dismerge exploring explicit exposure of the causal

history. From these design choices, I show that both datastores maintain consistent performance under

network partitions and variability, surpassing etcd’s performance, whilst also remaining competitive

in more reliable settings at the edge. The contributions in this chapter are as follows:

1. Analysing the requirements for edge focused distributed key-value stores, §5.2.

2. Outlining design trade-offs to cater for these requirements, §5.3.

3. Presenting the implementation of the two datastores exploring different parts of this design

space, §5.4.

4. Evaluating the systems highlighting mergeable&etcd’s and dismerge’s ability to operate with

consistent performance under larger cluster sizes and added latency, §5.5.

5. Discussing the implications of the changes applied on broader systems, particularly Kuber-

netes, §5.6.

110

Chapter 5. Orchestration for the edge

Table 5.1: Guarantees of etcd’s Key-Value API.

Name Definition
Atomicity Operations complete entirely or not at all.
Durability Completed operations are durable and a read operation never returns

data that is not durable.
Consistency Operations are linearizable. Range requests can be configured to be

serializable in the client’s request. Watch operations are not
linearizable.

Completeness of watches Watch responses never observe partial events for a single operation, so
all events generated by a single operation will be in the same watch
response.

Global revision Each mutating request is assigned a strictly monotonically increasing
revision number, global to the cluster.

Figure 5.1: Impact of a network partition initiated at 5s and restored at 10s on a 3 node etcd
cluster.

5.2 Motivation

Etcd makes guarantees about its Key-Value API [13] shown in Table 5.1. These cover the Key-

Value operations of Range requests, Put requests, DeleteRange requests, and Txn transactions which

encompass combinations of other requests with a conditional check.

Miniature datacenters and compute at the network edge are the main focus of this chapter. These

sites are resource constrained in multiple dimensions: CPU, memory, and networking. Near-edge

compute sites typically have few resources and machines, particularly compared to cloud datacenters,

but are more numerous, providing operation closer to the user. Due to the large number of sites, over-

heads from cross-site communication should be kept minimal as the network links are less performant

than in cloud datacenters.

111

5.2. Motivation

Applications running at the edge and serving user traffic want low latency operation, to be able

to handle a dynamic environment, avoid cross-site dependencies and progress independently of other

sites.

From the characteristics of the edge environment and the expectations of applications relying on

datastores such as etcd, I derive the following requirements for datastores deployed at the edge:

Site-local reads. To serve applications with low latency and avoid cross-site communication, reads

need to be site-local. This can be viewed similarly to a content-delivery network [108], which has

content cached at the edge to reduce latency of operations. Implied by site-local reads, each node needs

to maintain all historical data for each key locally as clients can request any key from any historical

point in time. This limits the overall quantity of data that can be stored but is key in enabling site-local

reads with history.

Site-local writes. Further to site-local reads the system should support site-local writes. This

ensures that the system can operate even when network connectivity is impaired.

Of these requirements, etcd is only able to fulfil site-local reads when serializable reads are used.

Site-local writes are never possible in a cross-site etcd cluster of at least three nodes. Performance will

be covered more in §5.5, but its architecture is targeted towards cloud datacenter deployments. Due

to this targeting it is also not the most resource efficient as it is designed to run on large multi-core

machines.

Three main strategies are currently used to deploy Kubernetes and etcd to the edge: cross-site

(Kubernetes) [14], single-site (K3s) [15], and cloud-centric (KubeEdge) [16]. Figure 5.2 shows the layout

of these, and Table 5.2 highlights the requirements they satisfy, from the point of view of a single edge

site, assuming etcd would be deployed at each control plane node. Blast radius refers to what would

be impacted if a site with a control-plane node is disconnected from everything else.

Running small clusters of datastores such as etcd at the center of large systems such as Kubernetes

leaves the large systems vulnerable to broader faults, particularly at the edge. As these systems become

distributed across datacenters for fault-tolerance, or edge sites for locality, they might retain access

to one datastore node preferentially for latency. When this datastore node becomes unable to process

requests, due to failure, all attached clients are unable to perform their actions. This creates a very

large blast radius for deployment strategies that centralise control-plane nodes in a single site. While

distributing control-plane nodes across sites to reduce the blast radius is beneficial from this point of

view, it does have an added latency overhead for communicating between sites to commit operations.

112

Chapter 5. Orchestration for the edge

(a) All-cloud. Kubernetes in the cloud. (b) Multi-site. Kubernetes across edge sites.

(c) Single-site. K3s in individual edge sites per
cluster.

(d) Cloud-centric. KubeEdge across cloud and
edge sites.

Figure 5.2: Kubernetes distribution architectures. Solid boxes indicate edge sites, dashed
boxes are cloud sites; arrows are potential connections between nodes; circles are control-

plane and datastore nodes, squares are worker nodes. Reproduced from Chapter 2 for
clarity with added red fill for blast radius when the control plane node in the given site is

unavailable.

Table 5.2: Comparison of requirements met by etcd deployed with deployment strategies
from Figure 5.2. Blast radius means the sites affected by a site containing control plane

nodes becoming unavailable.

Case Site-local
reads

Site-local
writes

Clusters
managed

Commit
quorum

Blast radius

All-cloud Yes Yes Single Local Same site
Multi-site No No Single Geodistributed Same site
Single-site Yes Yes Many Local Same site
Cloud-centric No No Single Local All sites

5.3 Design space

Table 5.3 highlights the key differences in the datastores presented. This focuses around four primary

points in the design space: consistency of data, how history is addressed, durability of data, and

how values are represented. This section explores the choices each datastore makes within these

parameters.

5.3.1 Consistency and fault tolerance

Lesson: Strong consistency is an availability and scalability bottleneck.

113

5.3. Design space

Table 5.3: Comparison of properties of the datastores.
St

or
e

Con
sis

te
ncy

Fa
ult

to
ler

an
ce

Hist
or

y a
dd

re
ss

in
g

Dura
bi

lit
y

Valu
es

etcd Linearizable 2𝑓 + 1 Integer counter Majority of
nodes

Bytes

mergeable&etcd Causal 𝑓 + 1 Integer counter Single node Operator-
defined

dismerge Causal 𝑓 + 1 Hash graph
heads

User dependent Operator-
defined

Etcd uses strong consistency, particularly linearizability, to replicate values between stores. This

means that, to tolerate up to 𝑓 node failures, it requires at least 2𝑓 + 1 nodes to be in the cluster. In

cloud environments, etcd can make assumptions of homogeneity, for both node sizes and network

links. However, near the edge these assumptions, particularly those of the network links, may not hold.

This impacts the scalability of the cluster, and ultimately the availability it can provide. Since etcd is

the critical core of many systems, it is notable that this limitation of fault-tolerance directly impacts

systems considerably bigger than itself.

The strongest possible consistency model offering availability under network partitions is causal

consistency [28]. This can be implemented with CRDTs and causal delivery. This model enables the

data viewed at different nodes of a system to differ, with the guarantee that it will converge. In practice,

this enables pushing replication of updates between nodes from happening eagerly to happening

lazily. This decouples nodes, enabling them to tolerate more heterogeneous network links, including

handling updates whilst experiencing complete partitions from the cluster. To tolerate 𝑓 node failures

these systems require only 𝑓 + 1 nodes in the cluster. For a geo-distributed setup, where clients only

connect to local datastore nodes, 𝑓 + 1 nodes need to be available within each site to ensure that the

local site can tolerate 𝑓 failures. This decoupling also enables these clusters to scale better, being able

to match the large number of edge sites. This makes the applications built on these systems able to be

more performant and reliable.

5.3.1.1 Mutable histories

One challenge in adapting the data model of etcd to work with causal consistency is that the previously

totally ordered history becomes partially ordered. This means that concurrent updates can lead to

114

Chapter 5. Orchestration for the edge

𝑆1 {}@1 {𝑎 : 1}@2 {𝑎 : 2}@3 {𝑎 : 3}@3

𝑆2 {}@1 {𝑎 : 1}@2 {𝑎 : 3}@3 {𝑎 : 3}@3

Figure 5.3: Sequence of updates to two mergeable&etcd datastores. History is mutable as
shown by the value at revision 3 changing on 𝑆1.

𝑆1 {𝑎 : 1}@2 {𝑎 : 2}@3 {𝑎 : 3}@3

𝑆2 {𝑎 : 1}@2 {𝑎 : 3}@3

Figure 5.4: Sequence of corresponding watch updates.

a particular revision being updated, and thus mutable. Figure 5.3 shows the process of two peers

synchronizing whilst having writes from separate clients. The first write is to 𝑆1 which synchronizes

with 𝑆2 without it having concurrent writes, so they both remain consistent. However, both nodes

then receive concurrent writes to the same key, 𝑎. This means that they will both use the same revision

for this update, 3, but have different values for the key. When they next synchronize this value needs

to be made consistent across the replicas and, in this case, the value from 𝑆2 wins over the value from

𝑆1. This is the way that I chose to resolve the conflicts, and the default for Automerge. An alternative

strategy might have chosen to keep all conflicts available in a multi-value register. If the client who

last wrote to 𝑆1 retrieves the value for 𝑎 again, it will see the updated value 3 at the same revision. This

mutable history is a consequence of the causal consistency coupled with etcd’s global revision counter.

I chose to retain the use of the revision field, rather than making a compound history identifier from

the revision and the node ID, to work within the context of existing client functionality.

Due to lazy synchronizations, datastores can have an unequal number of updates made to each. If

the same key is altered on different nodes concurrently then upon a merge the one with the higher

revision may dominate the other. This can even be due to updates on other keys in the store, artificially

progressing the revision counter before the same key is then updated. This dominating behaviour

is worst when synchronization is infrequent, particularly likely in times of failures such as network

partitions. mergeable&etcd is more vulnerable to this behaviour than dismerge due to the way that they

address changes.

115

5.3. Design space

5.3.1.2 Watching values

In etcd, when a client requests a stream of watch events from a server it is guaranteed to observe

complete changes, knowing the history is immutable. Since the history can change in mergeable&etcd,

two watch streams (connected to different servers) may observe different values at the same revision,

breaking this guarantee. When the two servers synchronize, they will have a consistent view of the

values, but the clients may not be updated with the result of this conflict-resolution as old revisions

do not have watches sent. When synchronizing the servers can send watch events for values if the

revision is newer, or even the same as that last sent as long as the incoming value is the winner. For

example, in Figure 5.4 the server 𝑆1 would send the new update for revision 3 whilst server 𝑆2 does

not need to as it has already sent that value. The first client will have a local conflict and so should

forget its past value and accept the newer one, whilst the latter client retains the original value.

5.3.2 Addressing history

Lesson: Linear histories prevent all changes being addressed under causal consistency.

Etcd maintains a linear history of all values, making them addressable with a monotonically

increasing integer counter known as the revision, Figure 5.5a. This provides users with a unique handle

for changes which they can use to look back in time, or resume watch streams from a known last

position. This counter is suitable for etcd’s use of Raft, since it produces a totally ordered log in which

consecutively committed values are assigned consecutive revision numbers. With causal consistency,

this breaks down because changes can be made to multiple nodes in parallel, thus they may be assigned

the same revision. When the nodes synchronize, using a counter to address the updates will effectively

cause conflicts in the history, breaking the expectation that the revision counter is a unique handle,

Figure 5.5b, note the multiple nodes with label 2 and 3. Additionally, updates synchronized from nodes

can appear in the past. This poses challenges for sending updates over watch streams as the clients

expect to already have observed the latest version, and so should not be sent an update for a past

revision. However, due to the nature of the update, clients may wish to update the value after merging

the representations, this is not possible using the single counter revisions.

Instead, when multiple nodes are accepting updates, vector clocks can be used to tag the updates,

forming a directed acyclic graph (DAG) of changes, Figure 5.5c. This has the advantage that now every

update has a unique identifier but the downside of the clocks growing, without removal. The clocks will

grow linearly in size 𝑂(𝑛) for 𝑛 nodes in the cluster, which is large near the edge. These clocks would

116

Chapter 5. Orchestration for the edge

1 2 3

(a) etcd’s strictly monotonically increasing
counter.

1

2

2 3

3

(b) mergeable&etcd’s counter with concurrent
edits.

∅

A:1

B:1
A:1
B:2

B:1
C:1

(c) Vector clock-based change addressing.

abcd

beef

dead feeb

daed

(d) dismerge’s hash-based change addressing,
hex-encoded here.

Figure 5.5: Comparison of different histories and the revision identifier attached to each
node.

be included in every request to identify the current revision for clients. Rather than incur the overhead

of sending these clocks over the network, the updates can be viewed as a hash DAG, similar to that of

Git [47], Figure 5.5d. Each update is uniquely represented by a single cryptographic hash, providing

collision-resistance, which encompasses the operations in the update itself along with the hashes of

its causal predecessors, scaling with on average 𝑂(1), independently of the size of the cluster. This,

on average, constant scaling complexity is based on nodes not all concurrently performing updates.

This equates to every change being a “merge commit” of the frontier of the DAG. Since changes are

now uniquely and efficiently addressed clients can always view the history at the point in time of each

individual hash, or provide a group of hashes to observe the data at a point where multiple changes

are simultaneously visible.

Clients can obtain the current set of frontier hashes for a node. However, unlike the revision

counter from etcd, the set of frontier hashes is not guessable or predictable for clients. Additionally,

a client is unable to infer any happens-before relation given just two hashes. However, the revision

field is typically used for addressing the observed history of the datastore, particularly during watch

streams. When clients request watch updates for keys, they maintain a record of the last revision

they encountered from an update. When they restart they can use this as an opaque identifier to the

datastore as a placeholder to pick up from where they last observed. Since the revision counter is

treated as opaque, the frontier hashes can be used similarly.

117

5.3. Design space

#[derive(Reconcile, Hydrate, Serialize, Deserialize)]
struct Deployment {
 image: String,
 replicas: u32,
}

Listing 5.1: Example of using typed values. Based on a Kubernetes Deployment resource.
The derive annotation triggers code generation for being able to treat the struct as an

Automerge object (Reconcile and Hydrate), and generic (de)serialization.

5.3.3 Durability

Lesson: Lack of individual change addressing makes durability management difficult.

When etcd replicates changes to other nodes, obtaining consensus over them, the changes are made

durable at each node before they acknowledge the change request. This ensures that, even in the event

that the entire cluster restarts simultaneously, the change will still be accessible. When replication is

lazy, as with causal consistency, the change is only made durable on the node processing the change

before responding to the client. Upon replicating the change to other nodes it becomes durable on

them, however, since this is a background process the client has no information about which nodes

have received a given change.

As seen in the previous section, a simple revision counter used by etcd prevents individual changes

being addressed, posing an issue for detecting what nodes have made it durable. Importantly, a single

revision counter means that clients must assume the change only ever has durability at the node at

which it was performed. However, using hashes for changes, and making them uniquely addressable,

enables clients to query nodes for their durable changes. The information of what changes each node

has can be included in the synchronization protocol, such that a single node will be able to inform a

client of the replication status of a change made there. Clients can then use this information to wait

for their changes to be sufficiently replicated among the cluster. The clients only need to do this if they

have a requirement beyond durability on one node.

5.3.4 Value representation

Lesson: Introspecting values at the datastore can provide semantic updates.

Treating the values as opaque bytes, as etcd does, can make for efficient and application agnostic

handling of requests. If etcd were to support structured values, such as JSON, it would still be going

through consensus on the individual updates, despite them potentially being to distinct parts of the

datatype. Limiting mergeable&etcd and dismerge to storing values as raw bytes has the same behav-

118

Chapter 5. Orchestration for the edge

{
 "image": "becorp/nginx",
 "replicas": 2
}

{
 "image": "becorp/nginx",
 "replicas": 3
}

{
 "image": "docker/nginx",
 "replicas": 2
}

{
 "image": "docker/nginx",
 "replicas": 3
}

Figure 5.6: Example of concurrently modifying two values, based on the datatype from
Listing 5.1.

iour, causing conflict-resolution to be coarse-grained. Supporting introspection of the value, based

on a datatype, natively enables the datastore to provide more fine-grained conflict-resolution, such

as allowing concurrent mutations to different parts of the datatype. For instance, for orchestration

workloads there may be two controllers operating concurrently that perform separate jobs. One is

responsible for updating the image to point to the correct location, the other is an autoscaler, respon-

sible for ensuring enough instances of the application are available to handle the demand. In etcd,

these updates must happen one before the other, requiring the second to re-apply the update locally

before sending to the datastore again. With mergeable&etcd and dismerge though the updates do not

need to be strictly ordered as they will merge when both changes are present at a datastore node.

This is performed using the derived implementations to reconcile the structure with the content in the

Automerge document, managed by the Autosurgeon library [17]. Figure 5.6 highlights this difference

based on the datatype in Listing 5.1.

5.4 Implementation

mergeable&etcd and dismerge share a similar architecture, serving an etcd-like API but based around

a CRDT document to enable decentralized operation. They are both implemented in Rust using the

Automerge CRDT library at the core. The Automerge CRDT document is single-threaded with other

119

5.4. Implementation

Client API Peer API

Watches KV Store Peer sync

Document

Persister

 Differ between implementations

 Shared between implementations

 Automerge

Figure 5.7: mergeable&etcd and dismerge architecture.

threads used to handle client requests. For persistence they can use either an in-memory store, a raw

filesystem, or an embedded key-value store.

Additionally, dismerge does not need to store the revision counter and related fields:

create_revision and mod_revision for each value. Instead, these can be generated on the fly for

values, querying Automerge for the values and adding them into the responses dynamically. It also

adds the API implementation for tracking replication status with peers as well as logic for calculating

the responses.

5.4.1 Architecture

Figure 5.7 shows the architecture of mergeable&etcd and dismerge. Both datastores focus on being

horizontally scalable, scaling with multiple different nodes, rather than vertically scalable, scaling using

more resources on each node. This is in order to span multiple edge sites for availability, rather than

large single site deployments. Requests pass through the etcd-compatible gRPC API and into the key-

value store. This key-value store contains an Automerge [18] CRDT document of keys and values.

Changes to the document are prepared in this module before being persisted to disk through the

persister. Once the changes have been persisted they pass back up through the gRPC API to the client.

On the return through the KV store the updated value is propagated to any watchers, and the syncing

thread is notified of changes so that it can share the updates with peers.

Operations on the Automerge CRDT document are single-threaded. As such, mergeable&etcd and

dismerge use other available threads to scale client request communication, making changes durable,

120

Chapter 5. Orchestration for the edge

and communicating with peers. Automerge internally handles representing the state efficiently, and

handles conflicts, merging, and synchronisation logic to determine which operations to send a peer.

5.4.2 Data model

Figure 5.8a shows the data model for mergeable&etcd, stored in the Automerge document with some

example data. The kvs is the main storage for key-value data with each key having a map of the

revisions that exist for it. Deleted values are represented by null at the given revision. This enables

efficiently handling queries for current and past data. Each key can also have an associated lease

identifier, which is only applicable to the latest value of the data. Leases are stored separately in the

leases key to support efficiently enumerating possible leases in the datastore. Metadata about the

cluster is stored in the cluster key including the ID of the cluster and the current revision. Finally,

the list of cluster members is stored in the members key, mapping their ID to their name, URLs for peer

connections, and URLs for client connections.

Figure 5.8b shows the data model for dismerge, stored in the Automerge document with some

example data. It shares most aspects with mergeable&etcd’s data model, namely leases and members.

The kvs is the main storage for key-value data with each key storing the latest value and the ID of any

lease associated with it, rather than the entire history. This does not need to store the entire history as

that is maintained within and queryable from Automerge directly. Deleted values have no key in the

kvs object. Metadata about the cluster is stored in the cluster key, but notably no revision field is

needed compared to mergeable&etcd as the hashes of the document are obtainable from Automerge.

These data models grow with each client update, enabling historical queries but incurring an

overhead to store all the data. Etcd supports compaction of the revision history to reduce the storage

space, preventing access to revisions older than the compaction point. This is not directly supported

in mergeable&etcd or dismerge due to a lack of support for garbage collection in Automerge at present,

though support is available in other libraries [19]. Without performing garbage collection the resource

usage (primarily memory and disk) will increase over time as operations are added to the history. It

also leads to an increased catchup time for new nodes to synchronise the state from existing cluster

members. This is mitigated at present via on-disk compression of the history.

5.4.2.1 Consistent initialization

To ensure that all nodes in a cluster can accept and merge changes from peers they need to start

with a consistent state. Initialization logic on each node sets this up in a consistent way on first start,

121

5.4. Implementation

{
 "kvs": {
 "key1": {
 "revs": {
 "001": [118, ...],
 "003": null
 },
 "lease_id": 1
 }
 },
 "leases": {
 "1": null
 },
 "cluster": {
 "cluster_id": 2,
 "revision": 3
 },
 "members": {
 0: {
 "name": "default",
 "peer_urls": [],
 "client_urls": []
 }
 }
}

(a) Data model for mergeable&etcd. Values under
revs are the encoded bytes.

{
 "kvs": {
 "key1": {

 "value": [118, ...],

 "lease_id": 1
 }
 },
 "leases": {
 "1": null
 },
 "cluster": {
 "cluster_id": 2

 },
 "members": {
 0: {
 "name": "default",
 "peer_urls": [],
 "client_urls": []
 }
 }
}

(b) Data model for dismerge. Values under value
are the encoded bytes.

Figure 5.8: Comparison of data models for mergeable&etcd and dismerge. mergeable&etcd’s
model keeps all revisions of a key in the document, dismerge’s model stores only the latest,

delegating the other revisions to be stored in the CRDT history.

by setting the document’s actor ID to 0 and creating empty objects for the key-values, server meta

information, members, and leases. For mergeable&etcd this initialization also sets the initial revision to

1. This creates a change with a predictable hash from which all changes can branch off from.

5.4.3 API Guarantees

While retaining the same wire-level API, the change of consistency model impacts the guarantees that

mergeable&etcd can make, highlighted in Table 5.4. Atomicity refers to how operations are performed:

mergeable&etcd performs them atomically originally, but conflicting changes can mutate values at

an existing revision, making the result non-atomic. dismerge provides atomic request handling as

revisions uniquely identify a change and the value cannot be updated for that revision. For durability,

mergeable&etcd and dismerge both only persist to the local node before returning to the client to

avoid reliance on the network connectivity to other nodes. mergeable&etcd and dismerge both also

122

Chapter 5. Orchestration for the edge

Table 5.4: API guarantee comparison of the datastores.

St
or

e

A
to

m
ic

ity

D
ur

ab
ili

ty

C
on

si
st

en
cy

W
ri

te
or

de
ri

ng

W
at

ch
ev

en
ts

R
ev

is
io

n
un

iq
ue

ne
ss

etcd Yes Majority Linearizable Total order Unordered,
complete

Globally

mergeable&etcd No Locally Causal Partial order Unordered,
incomplete

Pre-conflict

dismerge Yes Locally Causal Partial order Unordered,
complete

Globally

provide only partial ordering of writes, that is due to writes being able to be processed at different

nodes concurrently, before synchronizing the nodes and merging the data. Watch events are always

unordered, for all three of datastores. Notably, mergeable&etcd can send incomplete watch events: those

that may not contain all of the modifications for that revision related to the watch; this is because

merging other changes from peers can mutate an old revision, leading to previously sent watch event

being potentially incomplete. Merging changes in dismerge can never modify an existing revision, and

so the watch events are always complete. Revisions for mergeable&etcd are also only unique before

a node synchronizes with another that has a different operation at the same revision; that is: the

revisions are only unique pre-conflict. dismerge avoids this by using globally unique addresses, suitable

for capturing the causality.

5.4.4 Lease behaviour

When a lease is created it has an associated time to live (TTL). Since there is no leader in the datastore

cluster each node checks for the lease expiry independently. When a node detects that the lease has

expired, it deletes it, along with associated keys. This is then synchronized with other nodes in the

cluster.

In the case where two nodes concurrently expire the same lease this is safe, as the deletions result

in the same behaviour on each node. However, if one node expires a lease while another refreshes it,

due to a client request, then there is a conflict. In this case the refresh updates the lease’s associated

last_refresh time, being treated as an update to the lease. These concurrent updates, when merged,

can be seen as the lease expiring, and a new lease being created. When the lease is used again from

the merged state it will operate as a new lease.

123

5.4. Implementation

request response

optimistic sync

pessimistic
periodic sync

Client

Node 1

Node 2

Node 3
Figure 5.9: Example of the synchronization process. The message from Node 1 to Node 3

gets lost and later Node 3 obtains the change via periodic sync.

Leases are also typically used for leader election. If multiple clients are racing to use claim a key

with a lease then they may concurrently succeed. When the datastore nodes synchronize one of the

client’s operations will be chosen as the winner. This will then be propagated to the clients via the

watch stream that they should open, notifying them of the leadership change.

5.4.5 Durability

Etcd stores the contents of the datastore on-disk using the bolt [20] embedded key-value database.

It uses a flat structure to store the values at all revisions in history, up to the point of the last

compaction. mergeable&etcd stores values in an Automerge document. Doing so produces changes that

encapsulate the operations performed to the document. It is these changes that mergeable&etcd persists

in its embedded key-value database on-disk. This does mean that the document needs to be loaded

into memory before it is queryable, so mergeable&etcd can end up using more memory than etcd to

hold the actual document. Making CRDTs space-efficient, in both in-memory and on-disk formats, is

an active area of work [61, 83].

5.4.6 Synchronization

Automerge is an operation-based CRDT, meaning that it only needs to send changes that the peer does

not already have, rather than the full state. mergeable&etcd and dismerge split synchronization into two

main cases: optimistic and pessimistic, both are shown in Figure 5.9. In optimistic synchronization, a

node immediately broadcasts a change, generated from a client request, to its synchronization peers.

This enables fast replication in the best-case, when the network is partition-free. This method is very

simple, making it low-overhead and efficient to implement. When the network has partitions, these

124

Chapter 5. Orchestration for the edge

Figure 5.10: Time spent producing changes and performing periodic synchronization. Two
documents concurrently producing an equal number of changes before synchronizing.

Each change writes a new value to a shared key. 10,000 changes performed in total with 10
repeats.

changes may be missed by peers, or peers may not be in the synchronization peers of a node, but should

get the change. To solve this, pessimistic periodic synchronization is performed. This synchronization

uses the protocol built into Automerge, based on Kleppmann and Howard’s Byzantine Eventual

Consistency protocol [82] to synchronize the changes. The small number of round trips, typically one,

required to synchronize aids in minimising the resource requirements and latency when peers have

diverged. Peers propagate all seen changes, enabling transitive connectivity of nodes. Periodic repli-

cation has more computation overhead than optimistically broadcasting changes, as it has to calculate

the set of changes to send from the document based on an estimation of what the peer has. Figure 5.10

highlights this; producing changes is equivalent to the optimistic broadcasting. Additionally, this has

to be done on a peer-by-peer basis, adding extra load with more peer connections.

The topology of a mergeable&etcd cluster is a complete network. This is based off of the architecture

for etcd since leaders should be able to communicate with a majority of nodes. However, given merge&

able&etcd’s design to scale horizontally, this communication can quickly become cumbersome due to

𝑂(𝑛2) connections for 𝑛 nodes. This becomes less of a concern as the synchronization of changes is

transitive and the protocol rarely sends changes peers already have. Alternatively, instead of using a

complete network, mergeable&etcd can be configured with a list of peers to communicate with which

form a subgraph of the network. It is the responsibility of the operator to configure this subgraph

and to ensure that there is sufficient redundancy in the deployment. Future work could extend the

peer communication to share addresses of nodes, and actively monitor and build a topology based

on environmental factors such as latency and redundancy. This would ease operational aspects of

125

5.4. Implementation

the cluster while also being able to react internally to failures and changes in cluster membership.

However, this is left as future work due to it being highly dependent on deployment scenario.

Since the membership of the cluster is eventually consistent, like the data, there is no single config-

uration in operation at a single time, and no explicit reconfiguration of the cluster. Instead, members

join the cluster and leave dynamically, with their status information being propagated through the

synchronization between nodes.

5.4.7 Typing the values

Treating the values as opaque bytes, as etcd does, can make for efficient handling of requests but forces

last-writer-wins semantics when doing conflict resolution with CRDTs. In practice, these opaque bytes

often have a structure similar to JSON, consisting of nested maps and lists. Since Automerge supports

JSON datatypes natively behaviour can be improved under conflicting updates to values. mergeable&

etcd and dismerge clusters can be specialised to custom datatypes for values that are stored in the

cluster. This specialisation is performed at compile-time using a operator-provided implementation

provided in Rust, Listing 5.1. This implementation is responsible for parsing the bytes from the wire

representation into its datatype and updating the stored value in the CRDT, enabling capturing the

intent of changes. For reads, the implementation is responsible for extracting the value from the CRDT

and converting it to bytes to send on the wire. For instance, if updating items in a JSON dictionary, then

the conflict resolution can allow concurrent edits to different keys easily, rather than just accepting

one of the objects. Pre-built variants of the datastores are available supporting raw bytes as well as

JSON. Applications using a specialised variant of mergeable&etcd or dismerge, with custom datatypes,

can also handle translation of data to prior and future schemas as well as validation of data stored.

Using custom datatypes also enables more complex datatypes to be used, for instance using counters

rather than plain integers or enriching data stored to support other conflict resolution strategies.

Due to the custom datatypes producing minimal diffs of the value, this can reduce the amount of

data to replicate and persist. Figure 5.11 highlights this over a number of keys being changed. For the

edge environment, this can reduce extra traffic between sites, leaving more bandwidth for user traffic.

Each change in the datastore has additional, small, constant overhead beyond the bytes to encode

the diff.

126

Chapter 5. Orchestration for the edge

Figure 5.11: Size of change diff in varying over the number of keys changed. Keys were
integers, values were random strings of 500 characters. The JSON case is the size of the

total JSON-encoded data.

5.4.8 Exposed replication status

Now that the datastore’s history can be addressed uniquely, more details can be exposed to the clients.

One key item is that clients may have differing requirements for the replication of their values before

acting on them. dismerge can accommodate this by informing them of the replication status of a set of

frontier hashes. On each synchronization with peers (periodic synchronization), a node gets an update

of what the heads of the other nodes are, this also includes a notion of what frontier hashes both

nodes have in common. From this, and a set of frontier hashes a client is interested in, the node can

calculate which peer nodes have the change. This is limited to direct peers of a node but clients can

iteratively query other nodes to gather more information if desired. With this information, clients can

dynamically choose their replication factor without placing a significant extra burden on the server.

This API is available as an endpoint where the client sends a request for a set of frontier hashes and

receives a single response indicating, for each peer, whether they have the change corresponding to

the hash.

5.4.9 Model overheads

Since mergeable&etcd does not leverage the hash graph of Automerge it can batch multiple operations

into a single change. By leveraging the hash graph for addressing changes, dismerge requires each

client operation to be in a separate change. This leads to a trade-off in the time spent processing the

operations and the overhead of committing each change, explored in Figure 5.12. While committing of

a change there is a need to calculate the hash of the encoded representation. This adds an overhead

to processing a given number of client requests to serialize metadata for the change as well as the

127

Figure 5.12: Time spent on operations and commits in Automerge varying operation
counts per commit. Each operation writes to the same key in a map. Run for 10,000

operations with 100 repeats.

operation, before hashing. This can also impact the performance of individual operations due to the

cache locality of data. Lower level changes in Automerge may be possible to optimise the overhead of

calculating the hash but I considered it out of scope for this work.

5.5 Evaluation

I evaluated both mergeable&etcd and dismerge in comparison to etcd starting at an edge-like deployment

and then working towards a single node setup.

1. How do mergeable&etcd and dismerge handle a partition compared to etcd, particularly at

scale? §5.5.2

2. Assuming a reliable network without partitions, how does this change the performance of etcd

at scale compared to the others? §5.5.3

3. How would this performance differ in a datacenter-like environment? §5.5.4

4. What overhead do mergeable&etcd and dismerge add for single-node performance, given that

clients will be working with their site-local node? §5.5.5

5.5.1 Setup

Benchmarks were run on a single Azure Standard D64ds v5 (64 vcpus, 256 GiB memory) machine,

running Ubuntu 20.04, with 3 repeats. Load is generated using an open-loop load generator and uses

the YCSB workload A, which issues an equal ratio of updates and reads uniformly spread across the

keyspace. All requests were sent to a single node, to mimic a workload at a single edge site, and load was

128

Chapter 5. Orchestration for the edge

Figure 5.13: Latency of successful requests. Workload applied to a three node cluster. The
leader node is partitioned from the cluster at approximately 5 seconds into the experiment,

and this is cleared at 10 seconds in (dashed vertical lines). The 𝑦 axis is log-scale.

sustained for 5 seconds. Keys are 18 bytes and values are 32 bytes, randomly generated. Each datastore

node was run in a Docker container and limited to 2 CPUs to mimic limited edge resources. The

datastore nodes are backed with a tmpfs to minimise the impact of disk latency. No additional latency is

added between the nodes unless specified. All results presented are for successful requests. The setup

models a client interacting with its local datastore node only, relying on it to process the operations.

The client initially connects directly to the local leader node, this avoids forwarding overhead in etcd.

When the leader node is partitioned from the rest of the cluster, the leader will change and, after the

partition heals, the client may be connected to a non-leader node. Partitions were injected with the

use of iptables, delays were injected with the Linux traffic controller with a variation of 10% and

a correlation of 25%.

5.5.2 Starting at the edge

This section works within the context of a setup of three nodes spread over different sites, connected

over a 10ms link. 10ms was chosen to represent latencies between intra-country sites. The client is co-

located with a node, initially the leader node and a partition is injected between the leader node and the

rest of the cluster at approximately 5 seconds, before being healed at 10 seconds into the experiment.

Figure 5.13 shows the results of this experiment for each datastore. Initially, etcd has a higher

latency due to the latency of the network between the nodes. During the partitioned period etcd is

unable to service requests, internally queueing them until they time out. This is what leads to some

requests issued before the partition heals to be processed. When the partition is healed the local node

also has an overload of requests, as shown by the “too many requests” errors in Figure 5.14. During

129

5.5. Evaluation

Figure 5.14: Latency of failed requests by error condition, only from etcd. Workload
applied to a three node cluster. The leader node is partitioned from the cluster at

approximately 5 seconds into the experiment, and this is cleared at 10 seconds in (dashed
vertical lines). The 𝑦 axis is log-scale.

this recovery time, the local node is also trying to obtain who the new leader is and forward requests

to them for processing. This further exacerbates the latency of successful requests, and leads to more

overload. Requests that end up being successfully handled after the partition is healed and a steady

state is obtained now incur higher latency as the local node is no longer a leader, it must forward each

request.

mergeable&etcd and dismerge are able to continue processing requests during the partition, holding

changes to be synchronized until the partition heals. This maintains reliable performance during

the disruption and avoids costly recovery overheads after. The periodic synchronization ensures that

replicas obtain all of the missed changes.

5.5.3 Making the network reliable

Assuming that the network will be reliable, and not experience partitioning, the effect of network

latency on the scale of the cluster can be observed more directly. This setup follows that of the previous

section but no partition is injected during the experiment run, and so the leader node remains stable.

Due to etcd’s eager replication, it is very sensitive to the performance of the network. Figure 5.15

presents plots of the latency distribution and peak throughput across different cluster sizes. Cluster

sizes are odd-numbered to maximise failure tolerance for 𝑓 failures.

For single node deployments there is no network latency incurred as no replication is performed.

However, when adding nodes etcd’s latency drastically increases due to its requirement to replicate

data to a majority of nodes in the processing of a request. As the cluster size increases, this incurs a

marginal overhead to communicate with the nodes in the cluster. This highlights etcd’s sensitivity to

130

Chapter 5. Orchestration for the edge

Figure 5.15: Latency box plot of multiple nodes with 10ms latency on each link. Whiskers
extend from the 1st to the 99th percentile.

the network latency for processing requests. This also makes the assumption that all links are homo-

geneous, in reality they are likely to be heterogeneous due to their geographical distribution and so

some remote nodes could drastically impact the latency characteristics. This is further worsened when

the leader changes as it could change to a site with slower connections to a majority, bottlenecking all

requests on a single slow link.

mergeable&etcd and dismerge, which do not wait for replication before returning from a write, enable

more consistently low-latency operation, even at larger cluster scales. They too incur an overhead of

communicating with a larger number of peers but this is expected to be significantly lower than the

delay added to etcd due to the network latency. This can also be managed by not connecting all nodes

to all nodes, instead forming a mesh network.

5.5.4 Providing an optimal network

Since etcd is targeted for cloud datacenter deployments its scalability is now evaluated in a setting

with no latency, but still limited resources. This also highlights the overhead of added fault tolerance,

something which may still be important to cloud applications and which may limit the resources

each node can have. The impact of varying the cluster sizes can be observed in Figure 5.16, under a

target rate of 10,000 requests per second. Generally, etcd encounters scaling issues in terms of latency

with the increase in cluster size. Due to etcd’s optimised implementation, mergeable&etcd and dismerge

currently have a higher, but still small, fixed cost. Despite this and the analysis in the previous section

suggesting that the overhead of communicating with more nodes is marginal for etcd, there is indeed

an overhead incurred by etcd which seems to be non-trivial compared to the performance of small

clusters. This trend implies a cross-over point where clusters of etcd with no latency overhead become

131

Figure 5.16: Latency box plot of multiple nodes with no delay on each link. Whiskers
extend from the 1st to the 99th percentile.

less performant than mergeable&etcd and dismerge. Etcd’s latency is projected to continue to get worse

as cluster size increases, due to the fundamentally increasing amount of work that the leader node

must perform to replicate values and the eager nature of this.

5.5.5 Collapsing the cluster

The results of a single node handling requests are now used to compare the raw overhead of the data

model that mergeable&etcd and dismerge use internally. This avoids conflation with the synchronization

process. From Figure 5.17 and Figure 5.18, all datastores can handle the load up to around 30,000

requests per second, after which throughput drops off for all. However, after this point etcd suffers

significantly higher latency, not efficiently shedding or rejecting load. There is also higher overhead

within dismerge compared to mergeable&etcd at higher rates due to the overhead of extra commits,

discussed previously in §5.4.9.

Looking at Figure 5.19 etcd outperforms both mergeable&etcd’s and dismerge’s latency at lower

request rates. This is expected due to the extra overheads that the CRDT logic impose upon mergeable&

etcd and dismerge. When processing a write request, etcd simply needs to write it to the in-memory

maps and caches before persisting the write, which is effectively a no-op due to the tmpfs.

Errors begun to occur from the datastores from 30,000 requests per second.

5.6 Implications for applications

Maintaining the etcd API whilst changing the underlying consistency model may interfere with

existing applications. This is because their, assumed, reliance on the strong consistency has been

132

Chapter 5. Orchestration for the edge

Figure 5.17: Latency box plot with single node. Whiskers extend from the 1st to the 99th
percentile.

Figure 5.18: Comparison of achieved rate with respect to the target rate on single node.
Repeat variance shown by the shaded region.

Figure 5.19: Latency CDF at 10,000 requests per second to highlight differences at lower
loads on single node. The 𝑥 axis is log based.

broken. Despite this, new applications can make use of existing libraries for etcd and, with minimal

changes, work against mergeable&etcd or dismerge. A fork of the etcd client library could be created to

encapsulate these modifications.

133

When linearizability is traded for causal consistency, some Kubernetes controllers may not func-

tion correctly without modification. More subtly, the difference in replication of data from eager to lazy

can impact the durability guarantees of applications. Whilst I have left the modifications of controllers

to suit the causal model out of scope as this work focuses more on the model and potential datastores

to support it, I note that the model of Kubernetes presented in Chapter 3 can be used to inform and

test changes.

Under this model every partition of the datastore cluster effectively creates a replica of the entire

cluster, starting new instances of applications on both sides of the partition to ensure replica counts

are met. When the partition heals and the datastore nodes synchronize, controllers then reconcile the

state from the split cluster and drive it towards that of the single cluster.

One problematic piece of Kubernetes would be its guarantee of unique Pod names. As these names

are chosen by users, they cannot be implemented in a coordination-free system [38]. It is likely, as

shown from the modelling work that controllers would need to be adapted, or the guarantee modified

to suit the causal model. One possible mitigation is to have site-local controllers only manage the

instances at their site, injecting a suffix for the site name into the pod name to make them unique again.

Kubernetes, storing resource definitions as a JSON-like protobuf schema, would be a prime candi-

date for exploring the use of the typed values in mergeable&etcd or dismerge. For instance, replica counts

on Deployment resources could be modified concurrently to the other fields, such as the container

image to be run. This enables concurrent updates to take effect, rather than requiring the initiators to

retry their requests. For Deployments this is of interest to even higher-level controllers that might be

in charge of updating the image or providing dynamic scaling.

5.7 Related work

Anna [131] is a distributed key-value store that targets performance at both single node and cloud-

scale through a system of coordination-free actors. Anna also uses CRDTs for storage through a

custom implementation. Anna focuses on the core functionality of a distributed key-value store, not

implementing related functionality such as watching keys. As such, it is not a direct competitor

to mergeable&etcd but provides good lessons if mergeable&etcd were to need scaling to cloud-scale

workloads.

134

Chapter 5. Orchestration for the edge

Azure’s CosmosDB [36] is a closed-source NoSQL database that provides many different consis-

tency levels and with different API compatibility layers. This allowed CosmosDB to expose an etcd-

compatible API whilst changing the consistency levels dynamically [21]. The database can also produce

reports of the staleness of the data returned, enabling insight into the support of the application for

weaker consistency levels which may lead to performance improvements.

Other datastores leveraging CRDTs exist, notably AntidoteDB [22], Riak [23], and SwiftCloud [110].

AntidoteDB shards data between datastores within the same cluster (partition), and causally replicates

data between partitions at different sites. Transactions are possible but can require communication

with other nodes within the partition. This aids in scalability for larger datastets but increases overhead

of synchronization between nodes within a partition, rather than mergeable&etcd and dismerge’s

approach of keeping all data on every node to provide local operations. Riak takes a similar approach

to AntidoteDB, but lacks transactions on its key-value store and only provides eventual consistency,

whereas AntidoteDB provides causal consistency. SwiftCloud follows the similar model of AntidoteDB

again, providing transactions and causal consistency. SwiftCloud focuses on clients (separate from

datastore nodes) executing transactions themselves before committing at the datastore, whereas

mergeable&etcd and dismerge execute transactions on the datastore nodes. All appear to handle conflicts

using last-writer-wins register operations by default, though support for limited datatypes is possible,

providing different conflict resolution. Fine-grained merging of values during conflicts seems generally

unavailable.

5.8 Conclusion

Using insights from the model of orchestration in Chapter 3, I presented a realisation of using the causal

consistency model presented in Chapter 3, to enable further suitability for orchestration platforms for

the edge. In the process of designing the datastore suitable for this model, I focused on examining and

addressing the practical implementation of the consistency model, how to address history, durability

of values, and how they are represented in the programming model. This exploration then led to the

implementation of two new datastores, successively adapting etcd to be edge-suitable: mergeable&etcd

and dismerge. These datastores offer applications reliable local-first operation, enabling applications

to continue operating under unreliable network conditions found at the edge. The performance is also

considerably enhanced compared to etcd, providing consistent low-latency operation. Due to etcd’s

135

5.8. Conclusion

popularity as a critical distributed key-value store, I envision new avenues for work focusing on local-

first edge applications, avoiding eager coordination with other sites. Furthermore, this can be extended

to cloud environments to enhance reliability as both mergeable&etcd and dismerge offer competitive

performance with etcd, especially at larger cluster sizes. More broadly, this work highlights a transition

from servers being co-located with each other with distributed clients, to servers being co-located with

clients but being distributed from other servers.

136

Chapter 6

Conclusion

Overall, in this dissertation I have laid foundations for reasoning about orchestration platforms, with

a particular focus on the consistency models and their adaptations for different deployment scenarios.

The thesis of this dissertation was:

Orchestration is an underspecified problem given the variety of environments to which it

is deployed. This leads to a lack of guarantees about the platforms that developers and

operators can action and test against. Furthermore, the requirements posed by these new

environments require architectural changes, not always suited to the existing platforms due

to their assumptions about core mechanisms, particularly consistency of global state.

I have specified the orchestration problem in Chapter 3, presented a model of suitable for checking

properties of implementations as well as adapting implementations to new environments. I have

presented a datastore in Chapter 4 to support the deployment of orchestration platforms to the public

cloud, focusing on securing data in use as well as at-rest and in-transit, leveraging the optimistic

consistency model explored in Chapter 3. I have presented another datastore in Chapter 5 suited

to cloudlet deployments near the edge of the network, focusing on availability of the orchestration

platform locally, and making use of the causal consistency model explored in Chapter 3.

137

6.1 Motivation

Orchestration platforms originated in private datacenters and are designed for such resource-rich

environments. However, due to advancements and public releases their wider usage has accelerated,

leading to common deployments in the public cloud, as well as increasingly towards the edge. However,

the orchestration platforms were not necessarily designed with these constraints directly in mind and

so need changes to be properly suited to the environments.

Notably, in the public cloud there is a need for confidentiality of the data in the cluster, ensuring

that the public cloud provider does not need to be within the trust boundary. Near the edge, at cloudlets,

the environmental conditions are even more different than in the cloud and reliable high-performance

links between sites cannot be assumed, which is at odds with the desire to deploy clusters across sites

and easily manage applications within.

The limitations of the designs start with the central datastores which are common to the main

orchestration platforms today. Being at the core, they are primed to be tuned for the environments

first, with the rest of the orchestrator adapting around it. However, due to a lack of formalism of these

platforms making these changes can be difficult at best, needing to ensure safety properties remain

upheld in all cases.

6.2 Contributions and implications

In this work I have presented a lightweight formalisation of the orchestration problem. I defined this

as an abstract model based on current architectures of orchestrators. This abstract version enables

parallels to be drawn between the platforms and also stands on its own to enable further work on

theoretical results. I then described a concrete version of the abstract model, based around Kubernetes,

with descriptions of the model checking used to explore the state-space and check the provided

properties extracted from documentation and tests. The concrete model’s primary strength lies in the

fact that it is a single implementation that can be both model-checked for correctness, and deployed

as the real system. This eliminates the gap between formalisation and deployment as any deployment

scenario can trivially be reconstructed in the modelling context. With this, the consistency of the global

state in the model is adapted to be weaker, observing the impact on the model checking performance,

and the properties to be satisfied.

138

Chapter 6. Conclusion

From the insights around consistency within the model and the desire to better support other

environments, Chapter 4 and 5 focused on datastore implementations to support new orchestration

platforms. The first focuses on the public cloud, providing confidentiality of the data it stores as well

as consistency changes to mitigate the performance overheads of running in a secure environment.

This provides a foundation from which trust within a Kubernetes cluster can be provided and built for

applications. Compared to recent efforts to lift-and-shift entire Kubernetes clusters into confidential

environments, the presented datastore (LSKV) maintains a smaller trusted computing base and is

tolerant to rollbacks.

Targeting the edge using causal consistency enables an orchestration platform to span multiple

sites whilst maintaining local operation without overheads of separate federation clusters. For this

I presented the second datastore, dismerge, and its stepping stone mergeable&etcd. These adapt the

linear history of etcd to be causal, examining trade-offs in the transformations involved. This datastore

enables new deployments towards the edge of the network to span multiple sites with a single cluster

whilst retaining high availability and reliability.

6.3 Future work

Future work may explore the composition of confidential environments at the edge, particularly for

running across multiple untrusted edge sites not owned by one organisation. While simply running

dismerge within a TEE provides some immediate benefits where the hardware is available, and the

overhead is acceptable, it lacks proper adaptations to the new threat model. Building dismerge into

CCF may be of interest to leverage its multi-party governance in this model, particularly the idea of

adding cross-cluster communication to CCF to enable scalability to multiple sites.

Another direction would be to bring more of the orchestration model into the datastores. A key

aspect of the Themelios model is the consistency models around the state, but these do not directly

support scalable operation in reality. Work could be done to build datastores into the model itself,

though this might lead to another state-space explosion. Alternatively, the datastores themselves could

be model checked independently, checking consistency properties for them.

139

6.3. Future work

140

Bibliography

[1] Etcd linearizability. Retrieved November 1, 2024 from https://etcd.io/docs/v3.5/learning/api_

guarantees/#linearizability

[2] etcd. Retrieved December 27, 2022 from https://etcd.io/

[3] Protobuf. Retrieved December 27, 2022 from https://developers.google.com/protocol-buffers/

[4] gRPC. Retrieved December 27, 2022 from https://grpc.io/

[5] Rook. Retrieved December 27, 2022 from https://rook.io/

[6] CoreDNS. Retrieved December 27, 2022 from https://coredns.io/

[7] M3. Retrieved December 27, 2022 from https://m3db.io/

[8] Mesos: A distributed systems kernel. Retrieved July 5, 2024 from https://mesos.apache.org/

documentation/latest/architecture

[9] Stateright. Retrieved November 28, 2023 from https://github.com/stateright/stateright

[10] kind. Retrieved July 9, 2024 from https://kind.sigs.k8s.io/

[11] Encrypting Secret Data at Rest. Retrieved January 9, 2023 from https://kubernetes.io/docs/

tasks/administer-cluster/encrypt-data/

[12] Etcd Range API. Retrieved December 15, 2024 from https://etcd.io/docs/v3.4/learning/api/

#range

[13] KV API guarantees made by etcd. Retrieved July 11, 2024 from https://etcd.io/docs/v3.4/

learning/api_guarantees/

[14] Kubernetes. Retrieved December 27, 2022 from https://kubernetes.io/

[15] K3s: Lightweight Kubernetes. Retrieved July 11, 2024 from https://github.com/k3s-io/k3s

[16] KubeEdge: Kubernetes Native Edge Computing Framework. Retrieved July 11, 2024 from

https://kubeedge.io/

[17] Autosurgeon. Retrieved July 11, 2024 from https://github.com/automerge/autosurgeon

[18] Automerge. Retrieved July 11, 2024 from https://github.com/automerge/automerge

[19] Yjs garbage collection. Retrieved July 11, 2024 from https://docs.yjs.dev/api/y.doc

141

https://etcd.io/docs/v3.5/learning/api_guarantees/#linearizability
https://etcd.io/docs/v3.5/learning/api_guarantees/#linearizability
https://etcd.io/
https://developers.google.com/protocol-buffers/
https://grpc.io/
https://rook.io/
https://coredns.io/
https://m3db.io/
https://mesos.apache.org/documentation/latest/architecture
https://mesos.apache.org/documentation/latest/architecture
https://github.com/stateright/stateright
https://kind.sigs.k8s.io/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://kubernetes.io/docs/tasks/administer-cluster/encrypt-data/
https://etcd.io/docs/v3.4/learning/api/#range
https://etcd.io/docs/v3.4/learning/api/#range
https://etcd.io/docs/v3.4/learning/api_guarantees/
https://etcd.io/docs/v3.4/learning/api_guarantees/
https://kubernetes.io/
https://github.com/k3s-io/k3s
https://kubeedge.io/
https://github.com/automerge/autosurgeon
https://github.com/automerge/automerge
https://docs.yjs.dev/api/y.doc

6.3. Future work

[20] Bbolt: An embedded key/value database for Go. Retrieved July 11, 2024 from https://github.

com/etcd-io/bbolt

[21] Azure Cosmos DB API for etcd in preview. Retrieved July 11, 2024 from https://azure.microsoft.

com/en-us/updates/azure-cosmos-db-api-for-etcd-in-preview/

[22] AntidoteDB. Retrieved October 16, 2024 from https://www.antidotedb.eu/

[23] Riak KV. Retrieved October 16, 2024 from https://riak.com/products/riak-kv/index.html

[24] AMD. AMD EPYC™ 9654P. Retrieved September 28, 2023 from https://www.amd.com/en/

products/cpu/amd-epyc-9654p

[25] Sebastian Angel, Aditya Basu, Weidong Cui, Trent Jaeger, Stella Lau, Srinath T. V. Setty, and

Sudheesh Singanamalla. 2023. Nimble: Rollback Protection for Confidential Cloud Services. In

17th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2023, Boston,

MA, USA, July 10&12, 2023, 2023. USENIX Association, 193–208. Retrieved from https://www.

usenix.org/conference/osdi23/presentation/angel

[26] Arvind Arasu, Badrish Chandramouli, Johannes Gehrke, Esha Ghosh, Donald Kossmann,

Jonathan Protzenko, Ravi Ramamurthy, Tahina Ramananandro, Aseem Rastogi, Srinath T. V.

Setty, Nikhil Swamy, Alexander van Renen, and Min Xu. 2021. FastVer: Making Data Integrity

a Commodity. In SIGMOD 2021: International Conference on Management of Data, Virtual Event,

China, June 20&25, 2021, 2021. ACM, 89–101. https://doi.org/10.1145/3448016.3457312

[27] Arm®. 2021. Arm® Realm Management Extension (RME) System Architecture. Retrieved from

https://documentation-service.arm.com/static/60d3309b677cf7536a55bae0

[28] Hagit Attiya, Faith Ellen, and Adam Morrison. 2015. Limitations of Highly-Available Eventually-

Consistent Data Stores. In Proceedings of the 2015 ACM Symposium on Principles of Distributed

Computing (PODC '15), 2015. Association for Computing Machinery, Donostia-San Sebastián,

Spain, 385–394. https://doi.org/10.1145/2767386.2767419

[29] AWS. Amazon EC2 M7i and M7i-flex instances. Retrieved September 28, 2023 from https://aws.

amazon.com/ec2/instance-types/m7i/

[30] AWS. Amazon EC2 R5 Instances. Retrieved September 28, 2023 from https://aws.amazon.com/

ec2/instance-types/r5/

[31] AWS. AWS Wavelength features. Retrieved September 28, 2023 from https://aws.amazon.com/

wavelength/features/

[32] AWS. Monitoring AWS Global Network Performance. Retrieved September 28,

2023 from https://aws.amazon.com/blogs/networking-and-content-delivery/monitoring-aws-

global-network-performance/

142

https://github.com/etcd-io/bbolt
https://github.com/etcd-io/bbolt
https://azure.microsoft.com/en-us/updates/azure-cosmos-db-api-for-etcd-in-preview/
https://azure.microsoft.com/en-us/updates/azure-cosmos-db-api-for-etcd-in-preview/
https://www.antidotedb.eu/
https://riak.com/products/riak-kv/index.html
https://www.amd.com/en/products/cpu/amd-epyc-9654p
https://www.amd.com/en/products/cpu/amd-epyc-9654p
https://www.usenix.org/conference/osdi23/presentation/angel
https://www.usenix.org/conference/osdi23/presentation/angel
https://doi.org/10.1145/3448016.3457312
https://documentation-service.arm.com/static/60d3309b677cf7536a55bae0
https://doi.org/10.1145/2767386.2767419
https://aws.amazon.com/ec2/instance-types/m7i/
https://aws.amazon.com/ec2/instance-types/m7i/
https://aws.amazon.com/ec2/instance-types/r5/
https://aws.amazon.com/ec2/instance-types/r5/
https://aws.amazon.com/wavelength/features/
https://aws.amazon.com/wavelength/features/
https://aws.amazon.com/blogs/networking-and-content-delivery/monitoring-aws-global-network-performance/
https://aws.amazon.com/blogs/networking-and-content-delivery/monitoring-aws-global-network-performance/

Chapter 6. Bibliography

[33] AWS. AMD SEV-SNP on Amazon EC2. Retrieved July 5, 2024 from https://aws.amazon.com/ec

2/nitro/nitro-enclaves/

[34] AWS. Shuttle. Retrieved November 28, 2023 from https://github.com/awslabs/shuttle

[35] AWS. AWS-2022-001: AWS CloudFormation Issue. Retrieved January 11, 2023 from https://aws.

amazon.com/security/security-bulletins/AWS-2022-001/

[36] Microsoft Azure. Azure Cosmos DB. Retrieved July 11, 2024 from https://azure.microsoft.com/

en-gb/services/cosmos-db/

[37] Azure. Azure confidential computing. Retrieved July 5, 2024 from https://azure.microsoft.com/

en-us/solutions/confidential-compute/

[38] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and Ion

Stoica. 2014. Coordination avoidance in database systems (Extended version). arXiv preprint

arXiv:1402.2237 (2014).

[39] Maurice Bailleu, Dimitra Giantsidi, Vasilis Gavrielatos, Do Le Quoc, Vijay Nagarajan, and

Pramod Bhatotia. 2021. Avocado: A Secure In-Memory Distributed Storage System. In 2021

USENIX Annual Technical Conference, USENIX ATC 2021, July 14&16, 2021, 2021. USENIX Associ-

ation, 65–79. Retrieved from https://www.usenix.org/conference/atc21/presentation/bailleu

[40] Giovanni Bartolomeo, Mehdi Yosofie, Simon Bäurle, Oliver Haluszczynski, Nitinder Mohan,

and Jörg Ott. 2023. Oakestra: A Lightweight Hierarchical Orchestration Framework for Edge

Computing. In 2023 USENIX Annual Technical Conference, USENIX ATC 2023, Boston, MA, USA,

July 10&12, 2023, 2023. USENIX Association, 215–231. Retrieved from https://www.usenix.org/

conference/atc23/presentation/bartolomeo

[41] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O'Neill. 2009. Order-Preserving

Symmetric Encryption. In Advances in Cryptology & EUROCRYPT 2009, 28th Annual International

Conference on the Theory and Applications of Cryptographic Techniques, Cologne, Germany, April

26&30, 2009. Proceedings (Lecture Notes in Computer Science), 2009. Springer, 224–241. https://doi.

org/10.1007/978-3-642-01001-9_13

[42] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl, Seth Markle,

Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob Van Geffen, and Andrew Warfield.

2021. Using Lightweight Formal Methods to Validate a Key-Value Storage Node in Amazon S3.

In SOSP 2021: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event /

Koblenz, Germany, October 26&29, 2021, 2021. ACM, 836–850. https://doi.org/10.1145/3477132.

3483540

143

https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://github.com/awslabs/shuttle
https://aws.amazon.com/security/security-bulletins/AWS-2022-001/
https://aws.amazon.com/security/security-bulletins/AWS-2022-001/
https://azure.microsoft.com/en-gb/services/cosmos-db/
https://azure.microsoft.com/en-gb/services/cosmos-db/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://www.usenix.org/conference/atc21/presentation/bailleu
https://www.usenix.org/conference/atc23/presentation/bartolomeo
https://www.usenix.org/conference/atc23/presentation/bartolomeo
https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1145/3477132.3483540
https://doi.org/10.1145/3477132.3483540

6.3. Future work

[43] Michael Burrows. 2006. The Chubby Lock Service for Loosely-Coupled Distributed Systems. In

7th Symposium on Operating Systems Design and Implementation (OSDI 2006), November 6&8,

Seattle, WA, USA, 2006. USENIX Association, 335–350. Retrieved from http://www.usenix.org/

events/osdi06/tech/burrows.html

[44] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin J. Levandoski, James Hunter,

and Mike Barnett. 2018. FASTER: An Embedded Concurrent Key-Value Store for State Manage-

ment. Proceedings of the VLDB Endowment 11, 12 (2018), 1930–1933. https://doi.org/10.14778/

3229863.3236227

[45] Kenneth Church, Albert G. Greenberg, and James R. Hamilton. 2008. On Delivering Embarrass-

ingly Distributed Cloud Services. In 7th ACM Workshop on Hot Topics in Networks & HotNets&VII,

Calgary, Alberta, Canada, October 6&7, 2008, 2008. ACM SIGCOMM, 55–60. Retrieved from http://

conferences.sigcomm.org/hotnets/2008/papers/10.pdf

[46] Google Cloud. Confidential VM overview. Retrieved July 5, 2024 from https://cloud.google.com/

confidential-computing/confidential-vm/docs/confidential-vm-overview

[47] The Git community. Git. Retrieved July 11, 2024 from https://git-scm.com/

[48] Lynn Comp. Microsoft Azure Confidential Computing Powered by 3rd Gen EPYC™ CPUs.

Retrieved January 9, 2023 from https://community.amd.com/t5/business/microsoft-azure-

confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796

[49] Confidential computing. What is the Confidential Computing Consortium. Retrieved January

3, 2023 from https://confidentialcomputing.io/

[50] Rob Coombs. 2013. GlobalPlatform based Trusted Execution Environment

and TrustZone Ready. Retrieved from https://community.arm.com/cfs-file/__

key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-

based-Trusted-Execution-Environment-and-TrustZone-R.pdf

[51] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. 2010.

Benchmarking cloud serving systems with YCSB. In Proceedings of the 1st ACM Symposium on

Cloud Computing, SoCC 2010, Indianapolis, Indiana, USA, June 10&11, 2010, 2010. ACM, 143–154.

https://doi.org/10.1145/1807128.1807152

[52] Ankush Desai, Vivek Gupta, Ethan K. Jackson, Shaz Qadeer, Sriram K. Rajamani, and Damien

Zufferey. 2013. P: safe asynchronous event-driven programming. In ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI 2013, Seattle, WA, USA, June 16&19,

2013, 2013. ACM, 321–332. https://doi.org/10.1145/2491956.2462184

144

http://www.usenix.org/events/osdi06/tech/burrows.html
http://www.usenix.org/events/osdi06/tech/burrows.html
https://doi.org/10.14778/3229863.3236227
https://doi.org/10.14778/3229863.3236227
http://conferences.sigcomm.org/hotnets/2008/papers/10.pdf
http://conferences.sigcomm.org/hotnets/2008/papers/10.pdf
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://cloud.google.com/confidential-computing/confidential-vm/docs/confidential-vm-overview
https://git-scm.com/
https://community.amd.com/t5/business/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://community.amd.com/t5/business/microsoft-azure-confidential-computing-powered-by-3rd-gen-epyc/ba-p/497796
https://confidentialcomputing.io/
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2142-00-00-00-00-51-36/GlobalPlatform-based-Trusted-Execution-Environment-and-TrustZone-R.pdf
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2491956.2462184

Chapter 6. Bibliography

[53] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. 1988. Consensus in the presence of

partial synchrony. Journal of the ACM 35, 2 (1988), 288–323. https://doi.org/10.1145/42282.42283

[54] etcd. etcd versus other key-value stores. Retrieved January 11, 2023 from https://etcd.io/docs/

v3.5/learning/why/

[55] etcd. Does etcd encrypt data stored on disk drives?. Retrieved January 11, 2023 from https://

etcd.io/docs/v3.5/op-guide/security/#does-etcd-encrypt-data-stored-on-disk-drives

[56] Dimitra Giantsidi, Maurice Bailleu, Natacha Crooks, and Pramod Bhatotia. 2022. Treaty: Secure

Distributed Transactions. In 52nd Annual IEEE/IFIP International Conference on Dependable

Systems and Networks, DSN 2022, Baltimore, MD, USA, June 27&30, 2022, 2022. IEEE, 14–27. https://

doi.org/10.1109/DSN53405.2022.00015

[57] GitHub. Kubernetes issues for etcd and scalability. Retrieved July 11, 2024 from https://github.

com/kubernetes/kubernetes/issues?q=is%3Aissue+etcd+label%3Asig%2Fscalability

[58] GitHub. Rook issues for etcd. Retrieved July 11, 2024 from https://github.com/rook/rook/issues?

q=is%3Aissue+etcd+

[59] GitHub. M3 issues for etcd. Retrieved July 11, 2024 from https://github.com/m3db/m3/issues?

q=is%3Aissue+etcd+

[60] GitHub. CoreDNS issues for etcd. Retrieved July 11, 2024 from https://github.com/coredns/

coredns/issues?q=is%3Aissue+etcd+

[61] Alex Good and Andrew Jeffery. Binary Document Format. Retrieved July 11, 2024 from https://

alexjg.github.io/automerge-storage-docs/

[62] Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh. 2023.

Compiling Distributed System Models with PGo. In Proceedings of the 28th ACM International

Conference on Architectural Support for Programming Languages and Operating Systems, Volume

2, ASPLOS 2023, Vancouver, BC, Canada, March 25&29, 2023, 2023. ACM, 159–175. https://doi.org/

10.1145/3575693.3575695

[63] Dávid Haja, Mark Szalay, Balázs Sonkoly, Gergely Pongrácz, and László Toka. 2019. Sharpening

Kubernetes for the Edge. In Proceedings of the ACM SIGCOMM 2019 Conference Posters and

Demos, SIGCOMM 2019, Beijing, China, August 19&23, 2019, 2019. ACM, 136–137. https://doi.org/

10.1145/3342280.3342335

[64] Hashicorp. Nomad: Orchestration made easy. Retrieved January 3, 2023 from https://developer.

hashicorp.com/nomad/docs/concepts/architecture

145

https://doi.org/10.1145/42282.42283
https://etcd.io/docs/v3.5/learning/why/
https://etcd.io/docs/v3.5/learning/why/
https://etcd.io/docs/v3.5/op-guide/security/#does-etcd-encrypt-data-stored-on-disk-drives
https://etcd.io/docs/v3.5/op-guide/security/#does-etcd-encrypt-data-stored-on-disk-drives
https://doi.org/10.1109/DSN53405.2022.00015
https://github.com/kubernetes/kubernetes/issues?q=is%3Aissue+etcd+label%3Asig%2Fscalability
https://github.com/kubernetes/kubernetes/issues?q=is%3Aissue+etcd+label%3Asig%2Fscalability
https://github.com/rook/rook/issues?q=is%3Aissue+etcd+
https://github.com/rook/rook/issues?q=is%3Aissue+etcd+
https://github.com/m3db/m3/issues?q=is%3Aissue+etcd+
https://github.com/m3db/m3/issues?q=is%3Aissue+etcd+
https://github.com/coredns/coredns/issues?q=is%3Aissue+etcd+
https://github.com/coredns/coredns/issues?q=is%3Aissue+etcd+
https://alexjg.github.io/automerge-storage-docs/
https://alexjg.github.io/automerge-storage-docs/
https://doi.org/10.1145/3575693.3575695
https://doi.org/10.1145/3342280.3342335
https://developer.hashicorp.com/nomad/docs/concepts/architecture
https://developer.hashicorp.com/nomad/docs/concepts/architecture

6.3. Future work

[65] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for

Concurrent Objects. ACM Transactions on Programming Languages and Systems 12, 3 (1990),

463–492. https://doi.org/10.1145/78969.78972

[66] Heidi Howard, Markus A. Kuppe, Edward Ashton, Amaury Chamayou, and Natacha Crooks.

2024. Smart Casual Verification of CCF's Distributed Consensus and Consistency Protocols.

Retrieved from https://arxiv.org/abs/2406.17455

[67] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. 2016. Flexible Paxos: Quorum Inter-

section Revisited. In 20th International Conference on Principles of Distributed Systems, OPODIS

2016, December 13&16, 2016, Madrid, Spain (LIPIcs), 2016. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 1–14. https://doi.org/10.4230/LIPICS.OPODIS.2016.25

[68] Heidi Howard, Malte Schwarzkopf, Anil Madhavapeddy, and Jon Crowcroft. 2015. Raft

Refloated: Do We Have Consensus?. ACM SIGOPS Oper. Syst. Rev. 49, 1 (2015), 12–21. https://

doi.org/10.1145/2723872.2723876

[69] Intel. Intel® Xeon® Platinum 8490H Processor. Retrieved September 28, 2023 from

https://www.intel.com/content/www/us/en/products/sku/231747/intel-xeon-platinum-8490h-

processor-112-5m-cache-1-90-ghz/specifications.html

[70] Intel. Intel Software Guard Extensions. Retrieved January 3, 2023 from https://www.intel.com/

content/www/us/en/architecture-and-technology/software-guard-extensions.html

[71] Intel®. Intel® Xeon® Platinum 8360Y Processor. Retrieved January 11, 2023 from https://

ark.intel.com/content/www/us/en/ark/products/212459/intel-xeon-platinum-8360y-processor-

54m-cache-2-40-ghz.html

[72] Intel®. 2021. Intel® Trust Domain Extensions. Retrieved from https://cdrdv2.intel.com/v1/dl/

getContent/690419

[73] Marco Iorio, Fulvio Risso, Alex Palesandro, Leonardo Camiciotti, and Antonio Manzalini. 2023.

Computing Without Borders: The Way Towards Liquid Computing. IEEE Transactions on Cloud

Computing 11, 3 (2023), 2820–2838. https://doi.org/10.1109/TCC.2022.3229163

[74] Michael Isard. 2007. Autopilot: automatic data center management. ACM SIGOPS Oper. Syst. Rev.

41, 2 (2007), 60–67. https://doi.org/10.1145/1243418.1243426

[75] Andrew Jeffery, Heidi Howard, and Richard Mortier. 2021. Rearchitecting Kubernetes for the

Edge. In EdgeSys@EuroSys 2021: 4th International Workshop on Edge Systems, Analytics and

Networking, Online Event, United Kingdom, April 26, 2021, 2021. ACM, 7–12. https://doi.org/10.

1145/3434770.3459730

146

https://doi.org/10.1145/78969.78972
https://arxiv.org/abs/2406.17455
https://doi.org/10.4230/LIPICS.OPODIS.2016.25
https://doi.org/10.1145/2723872.2723876
https://www.intel.com/content/www/us/en/products/sku/231747/intel-xeon-platinum-8490h-processor-112-5m-cache-1-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/231747/intel-xeon-platinum-8490h-processor-112-5m-cache-1-90-ghz/specifications.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://ark.intel.com/content/www/us/en/ark/products/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/212459/intel-xeon-platinum-8360y-processor-54m-cache-2-40-ghz.html
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://cdrdv2.intel.com/v1/dl/getContent/690419
https://doi.org/10.1109/TCC.2022.3229163
https://doi.org/10.1145/1243418.1243426
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3434770.3459730

Chapter 6. Bibliography

[76] Chris Jensen, Heidi Howard, and Richard Mortier. 2021. Examining Raft's behaviour during

partial network failures. In HAOC 2021: Proceedings of the 1st Workshop on High Availability and

Observability of Cloud Systems, Virtual Event, United Kingdom, April 26, 2021, 2021. ACM, 11–

17. https://doi.org/10.1145/3447851.3458739

[77] Jepsen. Linearizability. Retrieved July 11, 2024 from https://jepsen.io/consistency/models/

linearizable

[78] Lara Lorna Jiménez and Olov Schelén. 2019. DOCMA: A Decentralized Orchestrator for Con-

tainerized Microservice Applications. In 2019 IEEE Cloud Summit, 2019. 45–51. https://doi.org/

10.1109/CloudSummit47114.2019.00014

[79] David Kaplan, Jeremy Powell, and Tom Woller. 2020. AMD SEV&SNP: Strengthening VM Isola&

tion with Integrity Protection and More. Retrieved from https://www.amd.com/system/files/

TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf

[80] David Kaplan. 2023. Hardware VM Isolation in the Cloud: Enabling confidential computing with

AMD SEV-SNP technology. ACM Queue 21, 4 (2023), 49–67. https://doi.org/10.1145/3623392

[81] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaehyuk Huh. 2019. Shield-

Store: Shielded In-memory Key-value Storage with SGX. In Proceedings of the Fourteenth EuroSys

Conference 2019, Dresden, Germany, March 25&28, 2019, 2019. ACM, 1–15. https://doi.org/10.1145/

3302424.3303951

[82] Martin Kleppmann and Heidi Howard. 2020. Byzantine Eventual Consistency and the Funda-

mental Limits of Peer-to-Peer Databases. CoRR (2020). Retrieved from https://arxiv.org/abs/

2012.00472

[83] Martin Kleppmann. CRDTs: The Hard Parts. Retrieved July 11, 2024 from https://martin.

kleppmann.com/2020/07/06/crdt-hard-parts-hydra.html

[84] Igor Konnov, Jure Kukovec, and Thanh-Hai Tran. 2019. TLA+ model checking made symbolic.

Proceedings of the ACM on Programming Languages 3, OOPSLA (2019), 1–30. https://doi.org/10.

1145/3360549

[85] Atsushi Koshiba, Ying Yan, Zhongxin Guo, Mitaro Namiki, and Lidong Zhou. 2018. TEE-KV:

Secure Immutable Key-Value Store for Trusted Execution Environments. In Proceedings of the

ACM Symposium on Cloud Computing, SoCC 2018, Carlsbad, CA, USA, October 11&13, 2018, 2018.

ACM, 535. https://doi.org/10.1145/3267809.3275475

[86] Michal Król, Spyridon Mastorakis, David Oran, and Dirk Kutscher. 2019. Compute First

Networking: Distributed Computing meets ICN. In Proceedings of the 6th ACM Conference on

147

https://doi.org/10.1145/3447851.3458739
https://jepsen.io/consistency/models/linearizable
https://jepsen.io/consistency/models/linearizable
https://doi.org/10.1109/CloudSummit47114.2019.00014
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://doi.org/10.1145/3623392
https://doi.org/10.1145/3302424.3303951
https://doi.org/10.1145/3302424.3303951
https://arxiv.org/abs/2012.00472
https://arxiv.org/abs/2012.00472
https://martin.kleppmann.com/2020/07/06/crdt-hard-parts-hydra.html
https://martin.kleppmann.com/2020/07/06/crdt-hard-parts-hydra.html
https://doi.org/10.1145/3360549
https://doi.org/10.1145/3360549
https://doi.org/10.1145/3267809.3275475

6.3. Future work

Information&Centric Networking, ICN 2019, Macao, SAR, China, September 24&26, 2019, 2019. ACM,

67–77. https://doi.org/10.1145/3357150.3357395

[87] Kubernetes. KubeFed: Kubernetes Cluster Federation. Retrieved October 9, 2024 from https://

github.com/kubernetes-retired/kubefed

[88] Kubernetes. Kubernetes is vulnerable to stale reads, violating critical pod safety guarantees.

Retrieved January 9, 2023 from https://github.com/kubernetes/kubernetes/issues/59848

[89] Kubernetes. Secrets. Retrieved January 11, 2023 from https://kubernetes.io/docs/concepts/

configuration/secret/

[90] Kubernetes. Operating etcd clusters for Kubernetes. Retrieved January 11, 2023 from https://

kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/

[91] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2 (1998), 133–

169. https://doi.org/10.1145/279227.279229

[92] Leslie Lamport. 2006. Fast Paxos. Distributed Comput. 19, 2 (2006), 79–103. https://doi.org/10.

1007/S00446-006-0005-X

[93] Leslie Lamport. 2019. Time, clocks, and the ordering of events in a distributed system. Concur&

rency: the Works of Leslie Lamport, 179–196. https://doi.org/10.1145/3335772.3335934

[94] Ákos Leiter, István Kispál, Attila Hegyi, Péter Fazekas, Nándor Galambosi, Péter Hegyi, Péter

Kulics, and József Bíró. 2022. Intent-based 5G UPF configuration via Kubernetes Operators in

the Edge. In Thirteenth International Conference on Ubiquitous and Future Networks, ICUFN 2022,

Barcelona, Spain, July 5&8, 2022, 2022. IEEE, 186–189. https://doi.org/10.1109/ICUFN55119.2022.

9829576

[95] Mihai Letia, Nuno M. Preguiça, and Marc Shapiro. 2010. Consistency without concurrency

control in large, dynamic systems. ACM SIGOPS Oper. Syst. Rev. 44, 2 (2010), 29–34. https://doi.

org/10.1145/1773912.1773921

[96] Vlad-Ioan Luca and Madalina Erascu. 2023. SAGE - A Tool for Optimal Deployments in Kuber-

netes Clusters. In IEEE International Conference on Cloud Computing Technology and Science,

CloudCom 2023, Naples, Italy, December 4&6, 2023, 2023. IEEE, 10–17. https://doi.org/10.1109/

CLOUDCOM59040.2023.00016

[97] Julien Maffre. Support for gRPC client streaming. Retrieved January 9, 2023 from https://github.

com/microsoft/CCF/issues/4683

[98] Prince Mahajan, Lorenzo Alvisi, Mike Dahlin, and others. 2011. Consistency, availability, and

convergence. University of Texas at Austin Tech Report 11, (2011), 158.

148

https://doi.org/10.1145/3357150.3357395
https://github.com/kubernetes-retired/kubefed
https://github.com/kubernetes-retired/kubefed
https://github.com/kubernetes/kubernetes/issues/59848
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://kubernetes.io/docs/tasks/administer-cluster/configure-upgrade-etcd/
https://doi.org/10.1145/279227.279229
https://doi.org/10.1007/S00446-006-0005-X
https://doi.org/10.1007/S00446-006-0005-X
https://doi.org/10.1145/3335772.3335934
https://doi.org/10.1109/ICUFN55119.2022.9829576
https://doi.org/10.1109/ICUFN55119.2022.9829576
https://doi.org/10.1145/1773912.1773921
https://doi.org/10.1109/CLOUDCOM59040.2023.00016
https://doi.org/10.1109/CLOUDCOM59040.2023.00016
https://github.com/microsoft/CCF/issues/4683
https://github.com/microsoft/CCF/issues/4683

Chapter 6. Bibliography

[99] Karim Manaouil and Adrien Lebre. 2021. Kubernetes WANWide: a Deployment Scenario to

Expose and Use Edge Computing Resources?. In 29th Euromicro International Conference on

Parallel, Distributed and Network&Based Processing, PDP 2021, Valladolid, Spain, March 10&12, 2021,

2021. IEEE, 193–197. https://doi.org/10.1109/PDP52278.2021.00038

[100] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David M. Sommer, Arthur

Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection for Trusted Execution.

In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, August

16&18, 2017, 2017. USENIX Association, 1289–1306. Retrieved from https://www.usenix.org/

conference/usenixsecurity17/technical-sessions/presentation/matetic

[101] Ralph C. Merkle. 1987. A Digital Signature Based on a Conventional Encryption Function. In

Advances in Cryptology & CRYPTO 1987, A Conference on the Theory and Applications of Crypto&

graphic Techniques, Santa Barbara , California, USA, August 16&20, 1987, Proceedings (Lecture

Notes in Computer Science), 1987. Springer, 369–378. https://doi.org/10.1007/3-540-48184-2_32

[102] Ines Messadi, Shivananda Neumann, Nico Weichbrodt, Lennart Almstedt, Mohammad Mah-

houk, and Rüdiger Kapitza. 2021. Precursor: a fast, client-centric and trusted key-value store

using RDMA and Intel SGX. In Middleware 2021: 22nd International Middleware Conference,

Qu e bec City, Canada, December 6 & 10, 2021, 2021. ACM, 1–13. https://doi.org/10.1145/3464298.

3476129

[103] Microsoft. CVE-2019-1372: Azure Stack Remote Code Execution Vulnerability. Retrieved

January 11, 2023 from https://www.cve.org/CVERecord?id=CVE-2019-1372

[104] Microsoft. CVE-2019-1234: Azure Stack Spoofing Vulnerability. Retrieved January 11, 2023 from

https://www.cve.org/CVERecord?id=CVE-2019-1234

[105] Microsoft. CVE-2023-21531: Azure Service Fabric Container Elevation of Privilege Vulnerability.

Retrieved January 11, 2023 from https://www.cve.org/CVERecord?id=CVE-2023-21531

[106] Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yinqian Zhang. 2022. NARRATOR: Secure and

Practical State Continuity for Trusted Execution in the Cloud. In Proceedings of the 2022 ACM

SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA,

November 7&11, 2022, 2022. ACM, 2385–2399. https://doi.org/10.1145/3548606.3560620

[107] Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable Consensus Algo-

rithm. In 2014 USENIX Annual Technical Conference, USENIX ATC 2014, Philadelphia, PA, USA,

June 19&20, 2014, 2014. USENIX Association, 305–319. Retrieved from https://www.usenix.org/

conference/atc14/technical-sessions/presentation/ongaro

149

https://doi.org/10.1109/PDP52278.2021.00038
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/matetic
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1145/3464298.3476129
https://doi.org/10.1145/3464298.3476129
https://www.cve.org/CVERecord?id=CVE-2019-1372
https://www.cve.org/CVERecord?id=CVE-2019-1234
https://www.cve.org/CVERecord?id=CVE-2023-21531
https://doi.org/10.1145/3548606.3560620
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

6.3. Future work

[108] Gang Peng. 2004. CDN: Content Distribution Network. CoRR (2004). Retrieved from http://arxiv.

org/abs/cs.NI/0411069

[109] Open Mobile Terminal Platform. 2009. Advanced Trusted Environment: OMTP TR1. Retrieved

from https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrusteden

vironmentomtptr1v11.pdf

[110] Nuno Preguiça, Marek Zawirski, Annette Bieniusa, Sérgio Duarte, Valter Balegas, Carlos

Baquero, and Marc Shapiro. 2014. Swiftcloud: Fault-tolerant geo-replication integrated all the

way to the client machine. In 2014 IEEE 33rd International Symposium on Reliable Distributed

Systems Workshops, 2014. 30–33.

[111] Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro, Amaury Chamayou,

Sylvan Clebsch, Manuel Costa, Cédric Fournet, Matthew Kerner, Sid Krishna, Julien Maffre,

Thomas Moscibroda, Kartik Nayak, Olga Ohrimenko, Felix Schuster, Roy Schuster, Alex Shamis,

Olga Vrousgou, and Christoph M. Wintersteiger. 2019. CCF: A framework for building confiden&

tial verifiable replicated services. Retrieved from https://raw.githubusercontent.com/microsoft/

CCF/main/CCF-TECHNICAL-REPORT.pdf

[112] Mark Russinovich, Manuel Costa, Cédric Fournet, David Chisnall, Antoine Delignat-Lavaud,

Sylvan Clebsch, Kapil Vaswani, and Vikas Bhatia. 2021. Toward confidential cloud computing.

Commun. ACM 64, 6 (2021), 54–61. https://doi.org/10.1145/3453930

[113] Stefanos Sagkriotis and Dimitrios Pezaros. 2022. Scalable Data Plane Caching for Kubernetes.

In 18th International Conference on Network and Service Management, CNSM 2022, Thessaloniki,

Greece, October 31 & Nov. 4, 2022, 2022. IEEE, 345–351. https://doi.org/10.23919/CNSM55787.2022.

9964497

[114] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Cá ceres, and Nigel Davies. 2009. The Case for

VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Comput. 8, 4 (2009), 14–23. https://

doi.org/10.1109/MPRV.2009.82

[115] Thomas Yurek, Adam Batori, Bader AlBassam, Daniel Genkin, Andrew Miller, Eyal Ronen, Yuval

Yarom, Christina Garman Stephan van Schaik Alex Seto. 2022. SoK: SGX.Fail: How Stuff Gets

eXposed. Retrieved July 12, 2024 from https://oaklandsok.github.io/papers/schaik2024.pdf

[116] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. 2013. Omega:

flexible, scalable schedulers for large compute clusters. In Eighth Eurosys Conference 2013,

EuroSys 2013, Prague, Czech Republic, April 14&17, 2013, 2013. ACM, 351–364. https://doi.org/10.

1145/2465351.2465386

150

http://arxiv.org/abs/cs.NI/0411069
http://arxiv.org/abs/cs.NI/0411069
https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://www.gsma.com/newsroom/wp-content/uploads/2012/03/omtpadvancedtrustedenvironmentomtptr1v11.pdf
https://raw.githubusercontent.com/microsoft/CCF/main/CCF-TECHNICAL-REPORT.pdf
https://raw.githubusercontent.com/microsoft/CCF/main/CCF-TECHNICAL-REPORT.pdf
https://doi.org/10.1145/3453930
https://doi.org/10.23919/CNSM55787.2022.9964497
https://doi.org/10.23919/CNSM55787.2022.9964497
https://doi.org/10.1109/MPRV.2009.82
https://oaklandsok.github.io/papers/schaik2024.pdf
https://doi.org/10.1145/2465351.2465386
https://doi.org/10.1145/2465351.2465386

Chapter 6. Bibliography

[117] Achilleas Santi Seisa, Sumeet Gajanan Satpute, and George Nikolakopoulos. 2023. A Kuber-

netes-Based Edge Architecture for Controlling the Trajectory of a Resource-Constrained Aerial

Robot by Enabling Model Predictive Control. CoRR (2023). https://doi.org/10.48550/ARXIV.2301.

13624

[118] Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. 2011. Conflict-Free

Replicated Data Types. In Stabilization, Safety, and Security of Distributed Systems & 13th Inter&

national Symposium, SSS 2011, Grenoble, France, October 10&12, 2011. Proceedings (Lecture Notes

in Computer Science), 2011. Springer, 386–400. https://doi.org/10.1007/978-3-642-24550-3_29

[119] Rohit Sinha and Mihai Christodorescu. 2018. VeritasDB: High Throughput Key-Value Store with

Integrity. IACR Cryptology ePrint Archive (2018), 251. Retrieved from http://eprint.iacr.org/2018/

251

[120] Yuanyuan Sun, Sheng Wang, Huorong Li, and Feifei Li. 2021. Building Enclave-Native Storage

Engines for Practical Encrypted Databases. Proceedings of the VLDB Endowment 14, 6 (2021),

1019–1032. https://doi.org/10.14778/3447689.3447705

[121] Edgeless Systems. EdgelessDB: The database for the age of confidential computing. Retrieved

January 9, 2023 from https://www.edgeless.systems/products/edgelessdb/

[122] Chunqiang Tang, Kenny Yu, Kaushik Veeraraghavan, Jonathan Kaldor, Scott Michelson, Thawan

Kooburat, Aravind Anbudurai, Matthew Clark, Kabir Gogia, Long Cheng, Ben Christensen, Alex

Gartrell, Maxim Khutornenko, Sachin Kulkarni, Marcin Pawlowski, Tuomas Pelkonen, Andre

Rodrigues, Rounak Tibrewal, Vaishnavi Venkatesan, and Peter Zhang. 2020. Twine: A Unified

Cluster Management System for Shared Infrastructure. In 14th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2020, Virtual Event, November 4&6, 2020, 2020. USENIX

Association, 787–803. Retrieved from https://www.usenix.org/conference/osdi20/presentation/

tang

[123] D.B. Terry, A.J. Demers, K. Petersen, M.J. Spreitzer, M.M. Theimer, and B.B. Welch. 1994. Session

guarantees for weakly consistent replicated data. In Proceedings of 3rd International Conference

on Parallel and Distributed Information Systems, 1994. 140–149. https://doi.org/10.1109/PDIS.

1994.331722

[124] Tokio. Loom. Retrieved November 28, 2023 from https://github.com/tokio-rs/loom

[125] Bohdan Trach, Rasha Faqeh, Oleksii Oleksenko, Wojciech Ozga, Pramod Bhatotia, and Christof

Fetzer. 2021. T-Lease: A Trusted Lease Primitive for Distributed Systems. CoRR (2021). Retrieved

from https://arxiv.org/abs/2101.06485

151

https://doi.org/10.48550/ARXIV.2301.13624
https://doi.org/10.48550/ARXIV.2301.13624
https://doi.org/10.1007/978-3-642-24550-3_29
http://eprint.iacr.org/2018/251
http://eprint.iacr.org/2018/251
https://doi.org/10.14778/3447689.3447705
https://www.edgeless.systems/products/edgelessdb/
https://www.usenix.org/conference/osdi20/presentation/tang
https://www.usenix.org/conference/osdi20/presentation/tang
https://doi.org/10.1109/PDIS.1994.331722
https://doi.org/10.1109/PDIS.1994.331722
https://github.com/tokio-rs/loom
https://arxiv.org/abs/2101.06485

6.3. Future work

[126] Eddy Truyen, Hongjie Xie, and Wouter Joosen. 2023. Vendor-Agnostic Reconfiguration of

Kubernetes Clusters in Cloud Federations. Future Internet 15, 2 (2023), 63. https://doi.org/10.

3390/FI15020063

[127] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric Tune, and John

Wilkes. 2015. Large-scale cluster management at Google with Borg. In Proceedings of the Tenth

European Conference on Computer Systems, EuroSys 2015, Bordeaux, France, April 21&24, 2015,

2015. ACM, 1–17. https://doi.org/10.1145/2741948.2741964

[128] Paolo Viotti and Marko Vukolic. 2016. Consistency in Non-Transactional Distributed Storage

Systems. ACM Comput. Surv. 49, 1 (2016), 1–34. https://doi.org/10.1145/2926965

[129] Paolo Viotti and Marko Vukolić. 2016. Consistency in Non-Transactional Distributed Storage

Systems. ACM Comput. Surv. 49, 1 (June 2016). https://doi.org/10.1145/2926965

[130] Weili Wang, Sen Deng, Jianyu Niu, Michael K. Reiter, and Yinqian Zhang. 2022. ENGRAFT:

Enclave-guarded Raft on Byzantine Faulty Nodes. In Proceedings of the 2022 ACM SIGSAC Con&

ference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, November

7&11, 2022, 2022. ACM, 2841–2855. https://doi.org/10.1145/3548606.3560639

[131] Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. 2021. Anna: A KVS for

Any Scale. IEEE Transactions on Knowledge and Data Engineering 33, 2 (2021), 344–358. https://

doi.org/10.1109/TKDE.2019.2898401

[132] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model Checking TLA+ Specifications.

In Correct Hardware Design and Verification Methods, 10th IFIP WG 10.5 Advanced Research

Working Conference, CHARME 1999, Bad Herrenalb, Germany, September 27&29, 1999, Proceedings

(Lecture Notes in Computer Science), 1999. Springer, 54–66. https://doi.org/10.1007/3-540-48153-

2_6

[133] Michał Zalewski. American Fuzzy Lop. Retrieved October 10, 2024 from https://lcamtuf.

coredump.cx/afl/

152

https://doi.org/10.3390/FI15020063
https://doi.org/10.3390/FI15020063
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2926965
https://doi.org/10.1145/2926965
https://doi.org/10.1145/3548606.3560639
https://doi.org/10.1109/TKDE.2019.2898401
https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/3-540-48153-2_6
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Introduction
	Motivation
	Deployment environments
	Private datacenter
	Public Cloud
	Near-edge cloudlets

	Existing orchestration platforms

	Outline
	Related publications

	Related work
	Orchestration platforms
	Borg, Omega, Kubernetes
	Etcd

	Mesos
	Nomad
	Others

	Distributed consistency
	A note on quorums
	Levels of consistency

	Environments
	Private cloud
	Public cloud
	Cloudlets (near-edge)

	Model checking

	A model of orchestration
	The orchestration problem
	Resource satisfaction
	Generality

	The abstract model
	The concrete model
	Inter-resource relationships
	The framework
	Controllers
	States
	Operations

	Resources and their controllers
	Nodes
	Pods
	ReplicaSets
	Deployments
	Statefulsets
	Jobs

	Checking for conformity
	Extracting and defining properties
	Documentation properties
	Integration test properties
	Other properties

	Expressing properties
	Selected properties

	State consistency
	What consistency does Kubernetes provide?
	Synchronous
	Monotonic and resettable session
	Optimistic linear
	Causal

	Model execution
	Checker strategies
	Operation generation, selection and application
	Property satisfaction
	Replicating the stale reads bug

	Real-world deployment
	Integrating with an existing cluster
	Running as a standalone cluster

	Performance
	State generation
	Depth coverage
	Code coverage

	Conclusion

	Orchestration for the public cloud
	The public cloud
	Motivation
	Overview
	CCF
	Data model and API
	Threat model
	Consistency model
	Fault and durability model
	Incremental adoption
	TEE flexibility
	Write Receipts

	Implementation
	Internals
	Response headers
	Maps
	Consensus and persistence
	Historical index
	Public ledger entries

	Consistency model
	Optimistic (latest data)
	Pessimistic (historical data)

	Auditability
	Write receipts

	Discussion
	Incremental adoption
	Optimistic consistency
	Untrusted servers

	Evaluation
	Setup
	YCSB benchmark
	Latency measurement

	LSKV vs etcd
	Horizontal scalability
	Vertical scalability
	Commit latency and receipts

	Related work
	Embedded datastores
	Confidential distributed building blocks
	Distributed confidential datastores

	Conclusion

	Orchestration for the edge
	The edge
	Motivation
	Design space
	Consistency and fault tolerance
	Mutable histories
	Watching values

	Addressing history
	Durability
	Value representation

	Implementation
	Architecture
	Data model
	Consistent initialization

	API Guarantees
	Lease behaviour
	Durability
	Synchronization
	Typing the values
	Exposed replication status
	Model overheads

	Evaluation
	Setup
	Starting at the edge
	Making the network reliable
	Providing an optimal network
	Collapsing the cluster

	Implications for applications
	Related work
	Conclusion

	Conclusion
	Motivation
	Contributions and implications
	Future work

	Bibliography

