2311.09929v1 [cs.DC] 16 Nov 2023

arxXiv

Mutating etcd Towards Edge Suitability

Andrew Jeffery
University of Cambridge
Cambridge, United Kingdom
andrew.jeffery@cst.cam.ac.uk

ABSTRACT

In the edge environment servers are no longer being co-located
away from clients, instead they are being co-located with clients
away from other servers, focusing on reliable and performant oper-
ation. Orchestration platforms, such as Kubernetes, are a key system
being transitioned to the edge but they remain unsuited to the en-
vironment, stemming primarily from their critical key-value stores.
In this work we derive requirements from the edge environment
showing that, fundamentally, the design of distributed key-value
datastores, such as etcd, is unsuited to meet them. Using these re-
quirements, we explore the design space for distributed key-value
datastores and implement two successive mutations of etcd for
different points: mergeable etcd and dismerge, trading linearizabil-
ity for causal consistency based on CRDTs. mergeable etcd retains
the linear revision history but encounters inherent shortcomings,
whilst dismerge embraces the causal model. Both stores are local-
first, maintaining reliable performance under network partitions
and variability, drastically surpassing etcd’s performance, whilst
maintaining competitive performance in reliable settings.
The source code this project is available at

https://github.com/jeffa5/mergeable-etcd

1 INTRODUCTION

More compute resources are becoming available near the edge of
the network leading to an increasing interest in deploying services
there. These services can perform aggregation closer to the edge, re-
ducing the volume of data to be sent to the cloud as well as offering
clients more local operations [26]. They can typically be deployed
in mini data centers [12] — small, mostly ISP operated, compute
sites. With each site being geographically distributed, networks
between edge sites can have higher latency than intra-datacenter
communication coupled with increased likelihood of network par-
titions. This is further exacerbated by resource limitations at each
site, requiring efficient use of those resources.

Resource aggregation is critical to this environment, exploiting
the numerous but geodistributed resources each site offers. Aggre-
gating sites into larger clusters enables running larger jobs with
higher availability, capitalising on the deployed resources and the
periodicity of demand. A single large cluster also eases manage-
ment and operation of the services, offering them higher availability
across sites through efficient orchestration.

Kubernetes [7] is a container orchestration platform based on
Google’s Borg [34] system. Kubernetes is used by a majority of the
top 500 companies in the world [9], managing deployments of ser-
vices over thousands of nodes, handling failures automatically [31].
In large data centers it leverages the low latency networks, having
a centralised control-plane and datastore, etcd [4], for coordinating
the various actions. Despite its prevalence in data centers, there is

Heidi Howard
Azure Research, Microsoft
Cambridge, United Kingdom
heidi.howard@microsoft.com

Richard Mortier

University of Cambridge
Cambridge, United Kingdom
richard.mortier@cst.cam.ac.uk

growing interest in deploying it to mini data centers close to the
edge with specific projects targeting this use case [5, 6].

etcd is a distributed, but logically centralised, key-value store. It
is widely used for cloud applications, including Kubernetes, Rook,
CoreDNS and M3 [4]. Due to its critical place in these systems it
is a key factor for them being suitable to deploy to the edge. In
fact, etcd has already been shown to have scalability limitations
under best-case scenarios [22], which would only be exacerbated
at the network edge with its higher latency cross-site links. As etcd
is critical to cloud applications’ operation, they are also bounded
by etcd’s ability to tolerate higher latencies and network faults,
impacting scalability and reliability [16—19].

In the process of analysing and deriving requirements from the
edge environment we present the design and implementation of
two successive adaptations to etcd: mergeable etcd and dismerge
trading linearizability [21, 35] for causal consistency [27, 29, 35]
with Conflict-free Replicated DataTypes (CRDTs) [28, 33]. These
target the edge environment with limited heterogeneous resources
whilst maintaining as close semblance to etcd as possible to min-
imise programming model differences and thus respective changes
in the systems built around etcd. They explore two different points
in the design space, mergeable etcd focusing on maintaining com-
patibility with etcd and its linear history, and dismerge exploring
the impacts of changes of exposing the causal history explicitly.
From these design choices, we show that both datastores maintain
consistent performance under network partitions and variability,
surpassing etcd’s performance, whilst also remaining competitive
in reliable settings at the edge. Our contributions in this paper are
as follows:

(1) We analyse the requirements for edge focused distributed
key-value stores, Section 2.

(2) We outline design trade-offs to cater for these requirements,
Section 3.

(3) We present the implementation of the two datastores ex-
ploring different parts of this design space, Section 4.

(4) We evaluate the systems highlighting mergeable etcd’s and
dismerge’s ability to operate with consistent performance
under larger cluster sizes and added latency, Section 5.

(5) We discuss the implications of the changes applied on
broader systems, particularly Kubernetes, Section 6.

2 BACKGROUND AND MOTIVATION

2.1 etcd

eted is a Raft-based [30] linearizable distributed key-value store,
requiring majority quorums. It exposes a straightforward API with
the ability to get ranges of values, write values and delete ranges
as well as being able to do these within transactions, all over a
single flat key-space. Another aspect of etcd is its ability for clients

https://orcid.org/0000-0003-0440-0493
https://orcid.org/0000-0001-5256-7664
https://orcid.org/0000-0001-5205-5992
https://github.com/jeffa5/mergeable-etcd

10° § %]
status : Sl a7
. ® success ! ;
E 107z failure 1 1
= | |
9 1 i
= 1 1
B L P | 1
|
1 1
i . ! . ! , : : :
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0

Time (s)

Figure 1: Impact of a network partition on a 3 node etcd
cluster. See Section 5.1 for more details.

to watch values and get updates pushed to them directly, through
watch streams, without the need to poll. Due to its use of lineariz-
ability etcd can struggle to perform adequately at scale [22], this is
fundamentally limited by the fault-tolerance model it adopts [14].
Since only a leader can process write requests, or linearizable reads,
client requests must either target the leader directly or be forwarded,
adding extra latency out of the control of the client. Due to its
fault-tolerance model etcd is unable to process requests without
communicating with a majority of nodes (Figure 1), leaving par-
titioned sites unable to adapt. etcd can also exhibit subtle failure
conditions under misbehaving networks [23].

etcd makes the following guarantees about its Key-Value API [8]:

Atomicity Operations complete entirely or not at all.

Durability Completed operations are durable and a read op-
eration never returns data that is not durable.

Consistency Operations are linearizable.

Completeness of watches Watch events never observe par-
tial events for a single operation.

Global revision Each mutating request is assigned a strictly
monotonically increasing revision number.

2.2 Edge environment

We focus on miniature data centers and compute at the network
edge. These sites are resource constrained in multiple dimensions:
CPU, memory, and networking. Near-edge compute sites are typi-
cally small but larger in number to provide closer operation to the
user. This large scale places emphasis on avoiding overheads from
cross-site communication which can be costly but also unreliable
in latency, bandwidth and consistency due to competing with user
traffic.

Applications running at the edge and serving user traffic want
low latency operation, to be able to handle a dynamic environment,
avoid cross-site dependencies and be able to progress independently
of other sites.

2.3 Deriving requirements

From the characteristics of the edge environment and the expecta-
tions of applications relying on datastores such as etcd, we derive
the following requirements for datastores deployed at the edge:

Site-local reads. To serve applications with low latency and avoid
cross-site communication reads need to be site-local. This can be
viewed similarly to a content-delivery network [32] which has
content cached at the edge to reduce latency of operations. Implied

Andrew Jeffery, Heidi Howard, and Richard Mortier

by site-local reads, each node needs to maintain all historical data
for each key locally. This limits the overall quantity of data that
can be stored but is key in enabling site-local reads with history.

Site-local writes. Further to site-local reads we also want a system
that supports site-local writes. This ensures that the system can
operate even when network connectivity is impaired.

Performance. Since edge applications need to be performant for
user expectations as well as supporting lots of work at the edge we
require the datastore to be performant.

Resource efficiency. In addition to performance, we want our
application to be efficient in its storage, using a small overhead
compared to the raw data storage requirement.

Of these requirements, etcd is only able to fulfil site-local reads
when serializable reads are used, which is uncommon in our expe-
rience. Site-local writes are never possible in etcd clusters of more
than one node. Performance will be covered more in the evalu-
ation section (Section 5), but its architecture is targeted towards
cloud data center deployments. Due to this targeting, it is also not
the most resource efficient, ideally running on large multi-core
machines.

2.4 Application deployment

Given deployments of etcd to the edge, we observe three main strate-
gies based off Kubernetes: single-site (K3s) [5], cross-site (vanilla) [7],
and cloud-centric (KubeEdge) [6]. Figure 2 shows the layout of these
and Table 1 highlights the requirements they satisfy from the point
of view of a single edge site, assuming etcd would be deployed
at each control plane node. Blast radius considers what would be
impacted if a site with control-plane node gets disconnected from
everything else.

Datastores based on eventual consistency, such as Cassandra [15],
can be deployed in equivalent configurations but still do not satisfy
the requirements. Since data is partitioned across nodes, each node
does not store all data, violating the site-local reads requirement,
writes are also not guaranteed to be served locally, depending on
replication requirements.

Running small clusters of datastores such as etcd at the center of
large systems such as Kubernetes leaves the large systems vulnerable
to broader faults, particularly at the edge. As these systems become
distributed across data centers for fault-tolerance, or edge sites for
locality, they may retain access to only one datastore node. When
this datastore node becomes unable to process requests, due to
failure, all attached clients are unable to perform their actions. This
creates a very large blast radius for the core distributed key-value
store, commonly relying on majority replication with a cluster size
of 3 or 5.

3 DESIGN SPACE

Table 2 highlights the key differences in the datastores presented.
This focuses around four primary points in the design space: con-
sistency of data, how history is addressed, durability of data, and
how values are represented. In this section we explore the choices
each datastore makes within these parameters.

Mutating etcd Towards Edge Suitability

(a) All-cloud. (b) k3s: single-site.

@ Control plane node

(c) Vanilla: multi-site. (d) KubeEdge: cloud-centric.

@ Worker node

Figure 2: Edge application deployment strategies. Boxes indicate edge sites, arrows indicate potential connections.

Table 1: Comparison of requirements met by etcd deployed with deployment strategies from Figure 2.

Case Site-local reads ~ Site-local writes Efficiency Management Blast radius
All-cloud Yes Yes Great Single cluster Single site
Single-site Yes Yes Wasted resources Lots of clusters Single site
Multi-site No No Great Single cluster ~ Multiple sites
Cloud-centric No No Bandwidth cost Single cluster ~ All edge sites

Table 2: Comparison of properties of the datastores.

Store Consistency Fault tolerance History addressing Durability Values

eted Linearizable 2f+1 Integer counter Majority of nodes Bytes

mergeable etcd Causal f+1 Integer counter Single node Operator-defined
dismerge Causal f+1 Hash graph heads User dependent Operator-defined

3.1 Consistency and fault tolerance

Lesson: Strong consistency is an availability and scalabil-
ity bottleneck.

etcd uses strong consistency, particularly linearizability, to repli-
cate values between stores. This means that, for f node failures,
it requires 2f + 1 to be in the cluster. In cloud environments, etcd
can make assumptions of node homogeneity, for both node sizes
and network links. However, near the edge these assumptions, par-
ticularly those of the network links, may not hold. This impacts
the scalability of the cluster, and ultimately the availability it can
provide. Therefore, the heterogeneous nature of the edge leads to
the imbalance of fault tolerance across sites explored in Section 2.4.
Since etcd is the critical core of many systems, it is notable that this
limitation of fault-tolerance directly impacts systems considerably
bigger than itself.

A weaker variant of using linearizability, which enables stronger
availability, is causal consistency. This can be easily implemented
with CRDTs. This model enables the data viewed at different nodes
of a system to differ, with the guarantee that it will converge in the
steady-state. In practice, this enables pushing replication of updates
between nodes from happening eagerly to happening lazily. This
decouples nodes, enabling them to tolerate more heterogeneous
network links, including handling updates whilst experiencing

complete partitions from the cluster. To tolerate f node failures
these systems require only f+1 nodes in the cluster. This decoupling
also enables these clusters to scale better, being able to match the
deployment scale of edge sites. This makes the applications built
on these systems able to be more performant and reliable.

3.1.1 Mutable histories. One challenge in adapting the data model
of etcd to work with causal consistency is that the previously im-
mutable history becomes mutable. Figure 3a shows the process of
two peers synchronizing whilst having writes from separate clients.
The first write is to S; which synchronizes with Sy without it hav-
ing concurrent writes, so they both remain consistent. However,
both nodes then receive concurrent writes to the same key, a. This
means that they will both use the same revision for this update, 3,
but have different values for the key. When they next synchronize
this value needs to be made consistent across the replicas and in
this case the value from Sz wins over the value from Sy. If the client
who last wrote to S retrieves the value for a again, it will see the
updated value 3 at the same revision. This mutable history is a
consequence of the causal consistency coupled with etcd’s global
revision counter.

Due to lazy synchronizations, datastores can have an imbalance
of updates made to them. If the same key is altered on different
nodes concurrently then upon a merge the one with the higher
revision may dominate the other. This can even be due to updates on
other keys in the store, artificially progressing the revision counter

—

{a:Z@‘ {a:3}@3

el
{a:3}@3 {a:3}@3

(a) Sequence of updates to two mergeable etcd datastores. History is
mutable (revision 3 on S;).

(b) Sequence of corresponding watch updates.

Figure 3: Updates and watches at mergeable etcd. Notation in
the form {key : value}@revision.

before the same key is then updated. This dominating behaviour
is worst when synchronization is infrequent, particularly likely in
times of failures such as network partitions. mergeable etcd is more
vulnerable to this behaviour than dismerge due to the way that they
address changes.

3.1.2 Watching values. When a client requests a stream of watch
events from a server it is guaranteed to observe complete changes,
knowing the history is immutable. Since the history can change in
mergeable etcd, two watch streams (connected to different servers)
may observe different values at the same revision, breaking this
guarantee. When the two servers synchronize they will have a
consistent view of the values but the clients may not be updated
with the result of this conflict-resolution. When synchronizing the
servers can send watch events for values if the revision is newer,
or even the same as that last sent as long as the incoming value is
the winner. For example, in Figure 3b the server S; would send the
new update for revision 3 whilst server Sy does not need to as it
has already sent that value. The first client will have a local conflict
and so should forget its past value and accept the newer one, whilst
the latter client retains the original value.

Andrew Jeffery, Heidi Howard, and Richard Mortier

3.2 Addressing history

Lesson: Linear histories prevent all changes being ad-
dressed under causal consistency.

etcd maintains the history of all values, making them addressable
with an integer counter, Figure 4a. This provides users with a unique
handle for changes which they can use to look back in time, or
resume watch streams from a known last position. This counter is
suitable under linearizability as there can only be one update for
each revision. With causal consistency, this breaks down because
changes can be made to multiple nodes in parallel, thus they may
get the same revision assigned. When the nodes synchronize, the
updates will effectively conflict in the history space, breaking the
expectation that the revision counter is a unique handle, Figure 4b.
Additionally, updates synchronized from nodes can appear in the
past. This poses challenges for sending updates over watch streams
as the clients expect to already have observed the latest version,
and so should not be sent an update for a past revision. However,
due to the nature of the update clients may care about it and wish
to update the value after merging the representations, this is not
possible using the single counter revisions.

Instead, when multiple nodes are accepting updates, we can
use vector clocks to tag the updates, forming a directed acyclic
graph (DAG) of changes, Figure 4c. This has the advantage that
now every update has a unique identifier but the downside of the
clocks growing, without removal. The clocks will grow linearly
in size O(n) for n nodes in the cluster, which is large near the
edge. These clocks would be included in every request to identify
the current revision for clients. Rather than incur the overhead of
sending these clocks over the network, we can view the updates
as a hash DAG, similar to that of Git [13], Figure 4d. Each update
is uniquely represented by a single hash, which encompasses the
operations in the update itself along with the hashes of its ancestors,
scaling with O(1) independently of the size of the cluster. This
equates to every change being a “merge commit” of the frontier of
the DAG. Since changes are now uniquely and efficiently addressed
clients can always view the history at the point in time of each
individual hash, or provide a group of hashes to observe the data
at a point where multiple changes are simultaneously visible.

Clients can obtain the current set of frontier hashes for a node.
However, unlike the revision counter from etcd, the set of frontier
hashes is not guessable or predictable for clients. However, the
revision field is typically used for addressing the observed history
of the datastore, particularly during watch streams. When clients
request watch updates for keys, they maintain a record of the last
revision they encountered from an update. When they restart they
can use this as an opaque identifier to the datastore as a placeholder
to pick up from where they last observed. Since the revision counter
is treated as opaque, the frontier hashes can be used similarly.

3.3 Durability

Lesson: Lack of individual change addressing leads to
difficult durability management.

Mutating etcd Towards Edge Suitability

O—~CE—~0

(a) etcd’s strictly monotonically increasing counter.

(b) mergeable etcd’s counter with concurrent edits.

(c) Vector clock-based change addressing.

\
\

(d) dismerge’s hash-based change addressing. Each node represents
the hex-encoded hash.

Figure 4: Revision representations visualised.

When etcd replicates changes to other nodes, obtaining consen-
sus over them, the changes are made durable at each node before
they acknowledge it. This ensures that, even in the event that the
entire cluster restarts simultaneously, the change will still be ac-
cessible. When replication is lazy, as with causal consistency, the
change is only made durable on the node processing the change
before responding to the client. Upon replicating the change to
other nodes it becomes durable on them, however, since this is
a background process the client has no information about which
nodes have received a given change.

As we have seen in the previous section, a revision counter
prevents individual changes being addressed, posing an issue for
detecting what nodes have made it durable. Importantly, a single
revision counter means that clients must assume the change only
ever has durability at the node it was performed at. However, using
hashes for changes, and making them uniquely addressable, we
regain the ability to query nodes for their durable changes. The
information of what changes each node has can be included in the
synchronization protocol such that a single node will be able to
inform a client of the replication status of a change made there.
Clients can then use this information to wait for a particular repli-
cation threshold for their changes to suit them.

#[derive(Reconcile, Hydrate, Serialize, Deserialize)]
struct Deployment {

image: String,

replicas: u32,

3
Listing 1: Example of using typed values. Based on a
Kubernetes Deployment resource.
{
"image": "becorp/nginx",
"replicas": 2
}
{ {
"image": "becorp/nginx", "image": "docker/nginx",
"replicas": 3 "replicas": 2
} }
{
"image": "docker/nginx",
"replicas": 3
3

Figure 5: Example of concurrently modifying two values,
based on the datatype from Listing 1.

3.4 Value representation

Lesson: Introspecting values at the datastore can provide
semantic updates.

Treating the values as opaque bytes, as etcd does, can make
for efficient, and application agnostic, handling of requests. If etcd
were to support structured values, such as JSON, it would still be
going through consensus on the individual updates, despite them
potentially being to distinct parts of the datatype. By enabling con-
current writes with mergeable etcd and dismerge using raw bytes
for values, the conflict-resolution is very coarse-grained, being at
the level of entire values. Supporting introspection of the value,
based on a datatype, natively enables the datastore to be able to
provide more fine-grained conflict-resolution, such as allowing con-
current mutations to different parts of the datatype. For instance,
for orchestration workloads we may have two controllers operat-
ing concurrently that perform separate jobs. One is responsible for
updating the image to point to the correct location, the other is an
autoscaler, responsible for ensuring enough instances of the appli-
cation are available to handle the demand. In etcd, these updates
must happen one before the other, requiring the second to re-apply
the update locally before sending to the datastore again, effectively
being last-writer wins. With mergeable etcd and dismerge though,
the updates do not need to be strictly ordered, they will merge to-
gether when both changes are present at a datastore node. Figure 5
highlights this difference based on the datatype in Listing 1.

v
Client API

Peer API

(et oy
/

Document
Persister

Differ between implementations

Watches

Shared between implementations

Automerge

Figure 6: mergeable etcd and dismerge architecture.

4 IMPLEMENTATION

mergeable etcd and dismerge share a similar architecture, serving
an etcd-like API but based around a CRDT document to enable
decentralized operation. They are both implemented in Rust using
the Automerge CRDT library at the core. The Automerge CRDT
document is single-threaded with other threads in used to handle
client requests. For persistence they can use either an in-memory
store, a raw filesystem, or an embedded key-value store.
Additionally, dismerge no longer needs to track the revision
counter and related fields: create revision and mod revision for each
value. It also adds the API implementation for tracking replication
status with peers as well as logic for calculating the responses.

4.1 Architecture

Figure 6 shows the architecture of mergeable etcd and dismerge.
Both datastores focus on being horizontally scalable rather than
vertically scalable. This is in order to span multiple edge sites for
availability, rather than large single site deployments. As such, they
do not use up all available cores, instead using only a few threads.
Requests pass through the etcd-compatible gRPC API and into the
key-value store. This key-value store contains an Automerge [1]
CRDT document of keys and values. Changes to the document are
prepared in this module before being persisted to disk through the
persister. Once the changes have been persisted they pass back
up through the gRPC API to the client. On the return through the
KV store the updated value gets propagated to any watchers and
the syncing thread is notified of changes so that it can share the
updates with peers.

Operations on the Automerge CRDT document are single-threaded,
focusing on limited edge resources, using other available threads
to scale client request protocol handling, making changes durable,
and communicating with peers.

4.2 Data model

Listing 2 shows the data model for mergeable etcd, stored in the
Automerge document with some example data. The kvs is the
main storage for key-value data with each key having a map of
the revisions that exist for it. Deleted values are represented by
null at the given revision. This enables efficiently handling queries
for current and past data. Each key can also have an associated

Andrew Jeffery, Heidi Howard, and Richard Mortier

{ "kvs": {
"key1": { "revs": {
"e01": [118, 97, ...1,
"003": null 3,
"lease_id": 1 }
3

"leases": { "1": null 3},
"cluster": { "cluster_id": 2,
"revision": 3 3},
"members": {
0: { "name": "default",
"peer_urls": [1],
"client_urls": [] }

Listing 2: Data model for mergeable etcd. Values under revs
are the encoded bytes.

lease identifier, which is only applicable to the latest value of the
data. Leases are stored separately in the leases key to support
efficiently enumerating possible leases in the datastore. Metadata
about the cluster is stored in the cluster key including the ID
of the cluster and the current revision. Finally, the list of cluster
members is stored in the members key, mapping their ID to their
name, URLs for peer connections, and URLs for client connections.

Listing 3 shows the data model for dismerge, stored in the Au-
tomerge document with some example data. It shares most aspects
with mergeable etcd’s data model, namely leases and members. The
kvs is the main storage for key-value data with each key storing the
latest value and the ID of any lease associated with it, rather than
the entire history. This does not need to store the entire history as
that is maintained within and queryable from Automerge directly.
Deleted values have no key in the kvs object. Metadata about the
cluster is stored in the cluster key but notably no revision field
is needed compared to mergeable etcd as the hashes of the document
are obtainable from Automerge.

These data models grow with each client update, enabling his-
torical queries but incurring an overhead to store all the data. etcd
supports compaction of the revision history to reduce the storage
space, preventing access to revisions older than the compaction
point. This is not directly supported in mergeable etcd or dismerge
due to a lack of support for garbage collection in Automerge at
present, though support is available in other libraries [10].

Consistent initialization. To ensure that all nodes in a cluster can
accept and merge changes from peers they need to start with a
consistent state. Initialization logic on each node sets this up in a
consistent way on first start by setting the document’s actor ID
to 0 and creating empty objects for the key-values, server meta
information, members, and leases. For mergeable etcd this initial-
ization also sets the initial revision to 1. This creates a change with
a predictable hash from which all changes can branch off from.

4.3 API Guarantees

While retaining the same wire-level API, the change of consistency
model impacts the guarantees that mergeable etcd can make. The

Mutating etcd Towards Edge Suitability

Table 3: API guarantee comparison of the datastores.

Store Atomicity Durability Consistency Write ordering Watch events Revision uniqueness
etcd Yes Majority ~ Linearizability = Total order Unordered, complete Globally
mergeable etcd Yes Locally Causal Partial order Unordered, incomplete Pre-conflict
dismerge Yes Locally Causal Partial order Unordered, complete Globally
{ kvs": { Client >
"key1": { "value": [118, 97, ...1, / v
"lease_id": 1 } request response
+ Node 1 \g/ -
"leases": { "1": null 3}, \ w
"cluster": { "cluster_id": 2 3}, send change
"members": { Node 2 \ 4 >
0: { "name": "default", \ //
"peer_urls": [], g periodic sync
"client_urls": [] } Node 3 / >

Listing 3: Data model for dismerge. Values under value are
the encoded bytes.

adaptations with respect are highlighted in Table 3. Atomicity refers
to how operations are performed: mergeable etcd performs them
atomically originally, but merging can make the result non atomic,
due to the lack of unique revision addressing. dismerge provides
atomic request handling due to the unique addresses. For durability,
mergeable etcd and dismerge both only persist to the local node
before returning to the client to avoid reliance on the network
connectivity to other nodes. mergeable etcd and dismerge both also
provide only partial ordering of writes, that is due to writes being
able to be processed at different nodes concurrently, before synchro-
nizing the nodes and merging the data. Watch events are always
unordered, particularly as for dismerge there is no total order to base
them off. Notably, mergeable etcd can send incomplete watch events:
those that may not contain all of the modifications for that revision
related to the watch; this is because merging other changes from
peers can mutate an old revision, leading to previously sent watch
event being potentially incomplete. Merging changes in dismerge
can never modify an existing revision, and so the watch events
are always complete. Revisions for mergeable etcd are also only
unique before a node synchronizes with another that has a different
operation at the same revision; that is: the revisions are only unique
pre-conflict. dismerge avoids this by bringing back globally unique
addresses suitable capturing the causality more accurately.

4.4 Durability

etcd stores the contents of the datastore on-disk using the bolt [3]
embedded key-value database. It uses a flat structure to store the
values at all revisions in history, up to the point of the last com-
paction. mergeable etcd stores values in an Automerge document.
Doing so produces changes that encapsulate the operations per-
formed to the document. It is these changes that mergeable etcd

Figure 7: Example of the synchronization process. The
message from Node 1 to Node 3 gets lost and later Node 3
obtains the change via periodic sync.

persists in its embedded key-value database on-disk. This does
mean that the document needs to be loaded into memory before it
is queryable, so mergeable etcd can end up using more memory than
eted to hold the actual document. Making CRDTs space-efficient,
in both in-memory and on-disk formats, is currently an active area
of work [20, 24].

4.5 Synchronization

Automerge is an operation-based CRDT, meaning that it only needs
to send changes that the peer does not already have, rather than the
full state. mergeable etcd and dismerge split synchronization into
two main cases: optimistic and pessimistic. In optimistic synchro-
nization, a node immediately broadcasts a change, generated from
a client request, to its synchronization peers. This enables fast repli-
cation in the best-case, when network the network is partition-free.
This method is very simple, making it low-overhead and efficient to
implement. Changes are not forwarded past the initial synchroniza-
tion peer. When the network has partitions, these changes may be
missed by peers, or peers may not be in the synchronization peers
of a node, but should get the change. To solve this, pessimistic peri-
odic synchronization is performed. This synchronization uses the
protocol built into Automerge, based on Kleppmann and Howard’s
Byzantine Eventual Consistency protocol [25] to synchronize the
changes. The small number of round trips, typically one, required
to synchronize aids in minimising the resource requirements and la-
tency when peers have diverged. Peers propagate all seen changes,
enabling transitive connectivity of nodes. Periodic replication has
more overhead than optimistically broadcasting changes as it has to
calculate the set of changes to send from the document based on an
estimation of what the peer has. Figure 8 highlights this; producing
changes is equivalent to the optimistic broadcasting. Additionally,

300 Processing time
mmm Changes
= Sync

Duration (ms)

100
Changes per sync

Figure 8: Time spent producing changes and performing
periodic synchronization. Two documents concurrently
producing an equal number of changes before
synchronizing. Each change writes a new value to a shared
key. 10,000 changes performed in total with 10 repeats.

this has to be done on a peer-by-peer basis, adding extra load with
more peer connections.

The topology of a mergeable etcd cluster is a complete network.
This is based off of the architecture for etcd since leaders should
be able to communicate with a majority of nodes. However, given
mergeable etcd’s design to scale horizontally, this communication
can quickly become cumbersome due to O(n?) connections for n
nodes. This becomes less of a concern as the synchronization of
changes is transitive and the protocol rarely sends changes peers
already have. Alternatively, instead of using a complete network,
mergeable etcd can be configured with a list of peers to communicate
with which form a subgraph of the network. It is the responsibility
of the operator to configure this subgraph and to ensure that there is
sufficient redundancy in the deployment. Future work could extend
the peer communication to share addresses of nodes and actively
monitor and build a topology based on environmental factors such
as latency and redundancy. This would ease operational aspects of
the cluster while also being able to react internally to failures and
changes in cluster membership. However, this is left as future work
due to it being highly dependent on deployment scenario.

4.6 Typing the values

Treating the values as opaque bytes, as etcd does, can make for
efficient handling of requests but forces last-writer-wins seman-
tics when doing conflict resolution with CRDTs. In practice, these
opaque bytes often have a structure similar to JSON, consisting of
nested maps and lists. Since Automerge supports JSON datatypes
natively we can offer improved behaviour under conflicting up-
dates to values. mergeable etcd and dismerge clusters can be spe-
cialised to custom datatypes for values that will be stored in the
cluster. This specialisation is performed at compile-time using a
operator-provided implementation provided in Rust, Listing 1. This
implementation is responsible for parsing the bytes from the wire
representation into its datatype and updating the stored value in
the CRDT, enabling capturing the intent of changes. For reads, the
implementation is responsible for extracting the value from the
CRDT and converting it to bytes to send on the wire. For instance,
if updating items in a JSON dictionary then the conflict resolution
can allow concurrent edits to different keys easily rather than just
accepting one of the objects. We provide pre-built variants of the

Andrew Jeffery, Heidi Howard, and Richard Mortier

5000

Type of diff

4000 { ™= Raw change

mmm Compressed change
= |SON

3000

2000

Size (bytes)

1000

4 5 6 7
Number of keys changed

Figure 9: Size of change diff in varying over the number of
keys changed. Keys were integers, values were random
strings of 500 characters. The JSON case is the size of the
total JSON-encoded data.

datastores supporting raw bytes as well as JSON. Applications us-
ing a specialised variant of mergeable etcd or dismerge with custom
datatypes can also handle translation of data to prior and future
schemas as well as validation of datastored. Using custom datatypes
also enables more complex datatypes to be used, for instance us-
ing counters rather than plain integers or enriching datastored to
support other conflict resolution strategies.

Due to the custom datatypes producing minimal diff's of the
value, this can reduce the amount of data to replicate and persist,
Figure 9 highlights this over a number of keys being changed. For
the edge environment, this can drastically reduce extra traffic be-
tween sites, leaving more bandwidth for user traffic. Each change in
the datastore has additional, small, constant overhead beyond the
bytes to encode the diff, this is particularly optimised in mergeable
etcd where multiple client operations are grouped into a single
change, whereas each client operation in dismerge creates a new
change.

4.7 Exposed replication status

Now that the datastore’s history can be addressed uniquely, we
can expose more details to the clients. One key item is that clients
may have differing requirements for the replication of their values
before acting on them. dismerge can accommodate this by informing
them of the replication status of a set of frontier hashes. On each
synchronization with peers (periodic synchronization), a node gets
an update of what the heads of the other nodes are, this also includes
a notion of what frontier hashes both nodes have in common. From
this, and a set of frontier hashes a client is interested in, the node
can calculate which peer nodes have the change. This is limited to
direct peers of a node but clients can iteratively query other nodes
to gather more information if desired. With this information, clients
can dynamically choose their replication factor without placing a
significant extra burden on the server. This API is available as a
unary endpoint where the client sends a request for a set of frontier
hashes and receives a single response indicating, for each peer,
whether they have the change corresponding to the hash.

4.8 Model overheads

Since mergeable etcd does not leverage the hash graph of Automerge
it can batch multiple operations into a single change. By leverag-
ing the hash graph for addressing changes, dismerge requires each

Mutating etcd Towards Edge Suitability

200

Processing time
150 EEE Operations
Commits

Duration (ms)

1 10 100 1000 10000
Operations per commit

Figure 10: Time spent on operations and commits in
Automerge varying operation counts per commit. Each
operation writes to the same key in a map. Run for 10,000
operations with 100 repeats.

client operation to be in a separate change. This leads to a trade-off
in the time spent processing the operations and the overhead of
committing each change, explored in Figure 10. During committing
of a change there is a need to calculate the hash of the encoded
representation. This adds an overhead to processing a given number
of client requests to serialize metadata for the change as well as the
operation, before hashing. This can also impact the performance of
individual operations due to the cache locality of data. Lower level
changes in Automerge may be possible to optimise the overhead of
calculating the hash but we do not delve into this in this work.

5 EVALUATION

We evaluate both mergeable etcd and dismerge in comparison to
etcd starting at an edge-like deployment and then working towards
a single node setup.

(1) How do mergeable etcd and dismerge handle a partition
compared to etcd, particularly at scale? Section 5.2

(2) Assuming a reliable network without partitions, how does
this change the performance of etcd at scale compared to
the others? Section 5.3

(3) How would this performance differ if we were in a data-
center-like environment? Section 5.4

(4) What overhead do mergeable etcd and dismerge add for
single-node performance, given that clients will be working
with their local node? Section 5.5

5.1 Setup

Benchmarks were run on a single Azure Standard D64ds v5 (64
vepus, 256 GiB memory) machine, running Ubuntu 20.04, with 3
repeats. Load is generated using an open-loop load generator and
uses the YCSB workload A, which issues an equal ratio of updates
and reads uniformly spread across the keyspace. All requests were
sent to a single node, to mimic a workload at a single edge site, and
load was sustained for 5 seconds. Keys are 18 bytes and values are 32
bytes, randomly generated. Each datastore node was run in a Docker
container and limited to 2 CPUs to mimic limited edge resources.
The datastore nodes are backed with a tmpfs to minimise the impact
of disk latency. No additional latency is added between the nodes
unless specified. All results presented are for successful requests.
The setup models a client interacting with its local datastore node
only, relying on it to process the operations. The client initially

10 T i g -
datastore m,‘”"’f‘w’-ﬁﬁ:t{--

- 1 ®irig,
£ 10° 1 e etcd i
£ mergeable-etcd-bytes :
g e dismerge-bytes !
102 oo] :
2 e, |

i) Wessss s s 8 e ‘ i *

T T t T t T
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Time (s)

(a) Latency of successful requests.

10%
£ 1075 !
z i
E, 1024 ® etcdserver: leader changed 1
5 etcdserver: request timed out |
o] ® etcdserver: too many requests |
} I

T } T
0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

(b) Latency of failed requests by error condition, only from etcd.

Figure 11: Workload applied to a three node cluster. The
leader node is partitioned from the cluster at approximately
5 seconds into the experiment, and this is cleared at 10
seconds in (dashed vertical lines). The y axis is log-based.

connects directly to the local leader node, this avoids forwarding
overhead in etcd. When the leader node is partitioned from the
rest of the cluster, the leader will change and, after the partition
heals, the client may be connected to a non-leader node. Partitions
were injected with the use of iptables, delays were injected with
the Linux traffic controller with a variation of 10% and a
correlation of 25%.

5.2 Starting at the edge

At the edge, applications will be deployed across sites, needing to
share data between these. The sites are geographically distributed
with limited resources at each, network links can also be unreliable.
As such, this section works within this context with a setup of three
nodes spread over sites, connected over a 10ms link. The client is
co-located with a node, initially the leader node and a partition
is injected between the leader node and the rest of the cluster at
approximately 5 seconds, before being healed at 10 seconds into
the experiment.

Figure 11a shows the results of this experiment for each datastore.
Initially, etcd has a higher latency due to the latency of the network
between the nodes. During the partitioned period etcd is unable
to service requests, internally queueing them until they time out.
This is what leads to some requests issued before the partition heals
to be processed. When the partition is healed the local node also
has an overload of requests, as shown by the “too many requests”
errors in Figure 11b. During this recovery time, the local node is
also trying to obtain who the new leader is and forward requests
to them for processing. This further exacerbates the latency of
successful requests, and leads to more overload. Requests that end
up being successfully handled after the partition is healed and a

6x 101 T 1

4x10! datastore J- i i i i
3x10" | mmm etcd

2 x 101 | mergeable-etcd-bytes

I dismerge-bytes
101_.1.{-1--1-1-1-1-%{-4{-}{-1-4
T T T T T T T T
1 3 7 9 11 13 15

5

Latency (ms)

Cluster size

Figure 12: Latency box plot of multiple nodes with 10ms
latency on each link. Whiskers extend from the 1st to the
99th percentile. The y axis is log-based.

steady state is obtained now incur higher latency as the local node
is no longer a leader, it must forward each request.

mergeable etcd and dismerge are able to continue processing
requests during the partition, holding changes to be synchronized
until the partition heals. This maintains reliable performance during
the disruption and avoids costly recovery overheads after. The
periodic synchronization will ensure that replicas obtain all of the
missed changes.

5.3 Making the network reliable

Assuming that the network will be reliable, not experiencing parti-
tions, we can view how the latency of the network affects the scale
of the cluster more directly. This setup follows that of the previous
section but no partition is injected during the experiment run, and
so the leader node remains stable. Due to etcd’s eager replication,
it is very sensitive to the performance of the network. Figure 12
presents plots of the latency distribution and peak throughput
across different cluster sizes. Cluster sizes are generated from the
2f + 1 function for etcd to maximise failure tolerance for f failures.

For single node deployments there is no network latency in-
curred as no replication is performed. However, when adding nodes
etcd’s latency drastically increases due to its requirement to repli-
cate data to a majority of nodes in the processing of a request.
As the cluster size increases, this incurs a marginal overhead to
communicate with the nodes in the cluster. This highlights etcd’s
sensitivity to the network latency for processing requests. This also
makes the assumption that all links are homogeneous, in reality
they are likely to be heterogeneous due to their geographical dis-
tribution and so some remote nodes could drastically impact the
latency characteristics. This is further worsened when the leader
changes as it could change to a site with slower connections to a
majority, bottlenecking all requests on a single slow link.

mergeable etcd and dismerge, moving eager communication off
the critical path, enable more consistently low-latency operation,
even at larger cluster scales. They too will incur an overhead of
communicating with a larger number of peers but this is expected
to be significantly lower than the delay added to etcd due to the
network latency. This can also be managed by not connecting all
nodes to all nodes, instead forming a mesh network.

Andrew Jeffery, Heidi Howard, and Richard Mortier

datastore
mm etcd
7.5 1 EEE mergeable-etcd-bytes

ek

10.0

Latency (ms)

w

0.0 -

11 13 15
Cluster size

Figure 13: Latency box plot of multiple nodes. Whiskers
extend from the 1st to the 99th percentile.

5.4 Providing an optimal network

Since etcd is targeted for cloud data center deployments we now
evaluate its scalability in a setting with no latency, but still limited
resources. This also highlights the overhead of added fault tolerance,
something which may still be important to cloud applications and
which may limit the resources each node can have. The impact of
varying the cluster sizes can be observed in Figure 13, under a target
rate of 10,000 requests per second. Generally, etcd encounters scal-
ing issues in terms of latency with the increase in cluster size. Due
to etcd’s optimised implementation, mergeable etcd and dismerge
currently have a higher, but still small, fixed cost. Despite this and
our analysis in the previous section suggesting that the overhead of
communicating with more nodes is marginal for etcd, we observe
that there is indeed an overhead incurred by etcd which seems
to be non-trivial compared to the performance of small clusters.
This trend implies a cross-over point where clusters of etcd with
no latency overhead become less performant than mergeable etcd
and dismerge. We project etcd’s latency to continue to get worse as
cluster size increases due to the fundamentally increasing amount
of work that the leader node must perform to replicate values and
the eager nature of this.

5.5 Collapsing the cluster

To compare the raw overhead of the data model that mergeable etcd
and dismerge use internally we compare results of a single node
handling requests. This avoids conflation with the synchronization
process. From Figures 14a and 14b, we observe that all datastores can
handle the load up to around 30,000 requests per second, after which
throughput drops off for all. However, after this point etcd suffers
significantly higher latency, not efficiently shedding or rejecting
load. We can also observe the higher overhead within dismerge
compared to mergeable etcd at higher rates due to the overhead of
extra commits, discussed previously in Section 4.8.

Looking at Figure 14c we can observe that for lower rates etcd
outperforms both mergeable etcd and dismerge in terms of latency.
This is expected due to the extra overheads that the CRDT logic
impose upon mergeable etcd and dismerge. When processing a write
request, etcd simply needs to write it to the in-memory maps and
caches before persisting the write, which is effectively a no-op due
to the tmpfs.

Errors begun to occur from the datastores from 30,000 requests
per second.

Mutating etcd Towards Edge Suitability

datastore
m etcd
mmm mergeable-etcd-bytes
mmm dismerge-bytes

3000 +

2000

Latency (ms)

1000 4

N L

T T
5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0
Target rate (kreg/s)

(a) Latency box plot. Whiskers extend from the 1st to the 99th

percentile.
datastore
301 eted
mergeable-etcd-bytes
204 —— dismerge-bytes

10

Achieved rate (kreq/s)

T T T
5 10 15 20 25 30 35 40
Target rate (kreqys)

(b) Comparison of achieved rate with respect to the target rate.
Repeat variance shown by the shaded region.

1.0
datastore

0.8 — eted
E 0.6 mergeable-etcd-bytes
S —— dismerge-bytes
504
£

0.2

0.0 i T T T T T

0 5 10 15 20 25
Latency {ms)

(c) Latency CDF at 10,000 requests per second to highlight
differences at lower loads.

Figure 14: Single node results.

6 IMPLICATIONS ON APPLICATIONS

Given the trade of linearizability for causal consistency applica-
tions may not function correctly without modification. More subtly,
the difference in replication of data from eager to lazy can impact
the durability guarantees of applications. Taking Kubernetes as an
example application that already relies on etcd, we can imagine
replacing it with mergeable etcd. Kubernetes primarily operates
by storing a desired state of resources in etcd. This central view
of the data is then acted upon by controllers that watch the data
and react to new versions. These controllers perform operations
such as creating new container resources (Pods) which are deliv-
ered to the scheduler and then allocated to a node. Controllers also
handle higher-level resources such as Deployments which dictate
the number of containers running in the cluster for a particular
application.

Due to the controllers present in Kubernetes, we believe that
mergeable etcd would enable it to remain functional. Any discrep-
ancy of the data due to merging of concurrent interactions will be
acted upon by the controllers and corrected. Importantly, mergeable
etcd does not impact the integrity of the values, only which value
would be presented. It is unclear whether Kubernetes provides stable

and sufficiently dampened control loops to handle higher latency
between the datastore nodes, and thus more temporary divergence.

Under this model every partition of the datastore cluster effec-
tively creates a replica of the entire cluster, starting new instances of
applications on both sides of the partition to ensure replica counts
are met. When the partition heals and the datastore nodes synchro-
nize, there will be one cluster again the controllers will drive the
state to that of the single cluster again.

One problematic piece of Kubernetes would be its guarantee of
unique Pod names. This is typically not an issue as Deployments
create Pods with randomised names, preventing collisions. However,
Kubernetes manages stateful deployments with a StatefulSet which
assigns numerically increasing names for the Pods. This could lead
to multiple Pods with the same name existing in the cluster due to
the weaker consistency in the datastore. One possible mitigation
is to have the site-local StatefulSet controllers only manage the
instances at their site, injecting a suffix for the site name into the
pod name to make them unique again.

Kubernetes, storing resource definitions as a JSON-like protobuf
schema, would be a prime candidate for exploring the use of the
typed values in mergeable etcd. For instance, replica counts on De-
ployment resources could be modified concurrently to the other
fields, such as the container image to be run. This enables con-
current updates to take effect, rather than requiring the initiators
to retry their requests. For Deployments this is of interest to even
higher-level controllers that might be in charge of updating the
image or providing dynamic scaling.

Integrating dismerge into Kubernetes would be more invasive
due changes in how history is addressed, but should be feasible
under the above discussion and ultimately lead to a more intuitive
model due to its immutable history.

7 RELATED WORK

Anna [36] is a distributed key-value store that targets performance
at both single node and cloud-scale through a system of coordination-
free actors. Anna also uses CRDTs for storage though uses a custom
implementation rather than a library. Anna focuses on the core
functionality of a distributed key-value store, not implementing
related functionality such as watching keys. As such, it is not a
direct competitor to mergeable etcd but provides good lessons if
mergeable etcd were to need scaling to cloud-scale workloads.

Azure’s CosmosDB [11] is a closed-source NoSQL database that
provides many different consistency levels and with different API
compatibility layers. This allowed CosmosDB to expose an etcd-
compatible API whilst changing the consistency levels dynami-
cally [2]. The database can also produce reports of the staleness of
the data returned, enabling insight into the support of the applica-
tion for weaker consistency levels which may lead to performance
improvements.

8 CONCLUSION

Deploying platforms and applications near to the edge provides new
challenges in delivering higher-level requirements. From these we
derive lower-level key-value datastore requirements and show how
etcd is unsuited to meet these. We explore the design space under
these requirements, focusing on consistency, history addressing,

durability and value representation. This exploration then instigates
the implementation of two new datastores, successively adapting
etcd to be edge-suitable: mergeable etcd and dismerge. These datas-
tores offer applications reliable local-first operation, enabling appli-
cations to continue operating under unreliable network conditions
found at the edge. The performance is also considerably enhanced
compared to etcd, providing consistent low-latency operation. Due
to etcd’s popularity as a critical distributed key-value store, we envi-
sion new avenues for work focusing on local-first edge applications,
avoiding eager coordination with other sites. Furthermore, this can
be extended to cloud environments to enhance reliability as both
mergeable etcd and dismerge offer competitive performance and can
be scaled to much greater extents. More broadly, this work high-
lights a transition from servers being co-located with each other
with distributed clients, to servers being co-located with clients but
being distributed from other servers.

Andrew Jeffery, Heidi Howard, and Richard Mortier

Mutating etcd Towards Edge Suitability

REFERENCES

[15]

[16

[17]

[19

[20]

[21

[22]

[23]

[24]

[25

[26]

[28]

[29

[30]

[31]

[32]
[33

[34

Automerge. https://github.com/automerge/automerge-rs.

Azure cosmos db api for etcd in preview. https://azure.microsoft.com/en-us/
updates/azure-cosmos-db-api-for-etcd-in-preview/.

Bbolt: An embedded key/value database for go. https://github.com/etcd-io/bbolt.
Etcd website. https://etcd.io.

K3s: Lightweight kubernetes. https://github.com/k3s-io/k3s.

Kubeedge: Kubernetes native edge computing framework. https://kubeedge.io/
en/.

Kubernetes. https://kubernetes.io.
Kv api guarantees made by etcd.
guarantees/.

Why large organizations trust kubernetes. https://tanzu.vmware.com/content/
blog/why-large-organizations-trust-kubernetes.

Yjs garbage collection. https://docs.yjs.dev/api/y.doc#y.doc-api.

Microsoft Azure. Azure cosmos db. https://azure.microsoft.com/en-gb/services/
cosmos-db/.

Kenneth Church, Albert Greenberg, and James Hamilton. On delivering embar-
rassingly distributed cloud services. 01 2008.

The Git community. Git. https://git-scm.com/.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in
the presence of partial synchrony. 7. ACM, 35(2):288-323, apr 1988.
https://doi.org/10.1145/42282.42283.

Apache Foundation. Apache cassandra. https://cassandra.apache.org/_/index.
html.

GitHub. Coredns issues for etcd. https://github.com/coredns/coredns/issues?q=
is%3Aissue+etcd+.

GitHub. Kubernetes issues for etcd and scalability. https://github.com/
kubernetes/kubernetes/issues?q=is%3Aissue+etcd+label%3Asig%2Fscalability.
GitHub. M3 issues for etcd. https://github.com/m3db/m3/issues?q=is%3Aissue+
eted+.

GitHub. Rook issues for etcd. https://github.com/rook/rook/issues?q=is%
3Aissue+eted+.

Alex Good and Andrew Jeffery. Binary document format. https://alexjg.github.
io/automerge-storage-docs/.

Maurice P Herlihy and Jeannette M Wing. Linearizability: A correctness condi-
tion for concurrent objects. ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(3):463-492, 1990.

Andrew Jeffery, Heidi Howard, and Richard Mortier. Rearchitecting Kubernetes
for the edge. In Proceedings of the 4th International Workshop on Edge Systems,
Analytics and Networking, EdgeSys ’21, page 7-12, New York, NY, USA, 2021.
Association for Computing Machinery. https://doi.org/10.1145/3434770.3459730.
Chris Jensen, Heidi Howard, and Richard Mortier. Examining raft’s be-
haviour during partial network failures. In Proceedings of the 1st Workshop
on High Availability and Observability of Cloud Systems, HAOC ’21, page
11-17, New York, NY, USA, 2021. Association for Computing Machinery.
https://doi.org/10.1145/3447851.3458739.

Martin Kleppmann. Crdts: The hard parts. https://martin.kleppmann.com/2020/
07/06/crdt-hard-parts-hydra.html.

Martin Kleppmann and Heidi Howard. Byzantine eventual consistency and the
fundamental limits of peer-to-peer databases, 2020.

Michat Krol, Spyridon Mastorakis, David Oran, and Dirk Kutscher. Compute
first networking: Distributed computing meets icn. In Proceedings of the 6th ACM
Conference on Information-Centric Networking, ICN °19, page 67-77, New York,
NY, USA, 2019. Association for Computing Machinery.

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
In Concurrency: the Works of Leslie Lamport, pages 179-196. 2019.

Mihai Letia, Nuno Preguica, and Marc Shapiro. Consistency without concurrency
control in large, dynamic systems. ACM SIGOPS Operating Systems Review,
44(2):29-34, April 2010.

Prince Mahajan, Lorenzo Alvisi, Mike Dahlin, et al. Consistency, availability,
and convergence. University of Texas at Austin Tech Report, 11:158, 2011.

Diego Ongaro and John Ousterhout. In search of an understand-
able consensus algorithm. In 2014 USENIX Annual Technical Con-
ference (USENIX ATC 14), pages 305-319, Philadelphia, PA, June 2014.
USENIX Association. https://www.usenix.org/conference/atc14/technical-
sessions/presentation/ongaro.

OpenAl Scaling kubernetes to 7,500 nodes. https://openai.com/research/scaling-
kubernetes-to-7500-nodes.

Gang Peng. Cdn: Content distribution network, 2004.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. Conflict-free
replicated data types. In 13th International Conference on Stabilization, Safety,
and Security of Distributed Systems, SSS 2011, pages 386-400. Springer LNCS
volume 6976, October 2011.

Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. Large-scale cluster management at google with borg.

https://etcd.io/docs/v3.4/learning/api_

(35]

(36]

In Proceedings of the Tenth European Conference on Computer Systems, Eu-
roSys ’15, New York, NY, USA, 2015. Association for Computing Machinery.
https://doi.org/10.1145/2741948.2741964.

Paolo Viotti and Marko Vukoli¢. Consistency in non-transactional distributed
storage systems. ACM Computing Surveys (CSUR), 49(1):1-34, 2016.
Chenggang Wu, Jose M. Faleiro, Yihan Lin, and Joseph M. Hellerstein. Anna:
A kvs for any scale. IEEE Transactions on Knowledge and Data Engineering,
33(2):344-358, 2021.

https://github.com/automerge/automerge-rs
 https://azure.microsoft.com/en-us/updates/azure-cosmos-db-api-for-etcd-in-preview/
 https://azure.microsoft.com/en-us/updates/azure-cosmos-db-api-for-etcd-in-preview/
https://github.com/etcd-io/bbolt
https://etcd.io
https://github.com/k3s-io/k3s
https://kubeedge.io/en/
https://kubeedge.io/en/
https://kubernetes.io
https://etcd.io/docs/v3.4/learning/api_guarantees/
https://etcd.io/docs/v3.4/learning/api_guarantees/
 https://tanzu.vmware.com/content/blog/why-large-organizations-trust-kubernetes
 https://tanzu.vmware.com/content/blog/why-large-organizations-trust-kubernetes
https://docs.yjs.dev/api/y.doc#y.doc-api
https://azure.microsoft.com/en-gb/services/cosmos-db/
https://azure.microsoft.com/en-gb/services/cosmos-db/
https://git-scm.com/
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://github.com/coredns/coredns/issues?q=is%3Aissue+etcd+
https://github.com/coredns/coredns/issues?q=is%3Aissue+etcd+
https://github.com/kubernetes/kubernetes/issues?q=is%3Aissue+etcd+label%3Asig%2Fscalability
https://github.com/kubernetes/kubernetes/issues?q=is%3Aissue+etcd+label%3Asig%2Fscalability
https://github.com/m3db/m3/issues?q=is%3Aissue+etcd+
https://github.com/m3db/m3/issues?q=is%3Aissue+etcd+
https://github.com/rook/rook/issues?q=is%3Aissue+etcd+
https://github.com/rook/rook/issues?q=is%3Aissue+etcd+
https://alexjg.github.io/automerge-storage-docs/
https://alexjg.github.io/automerge-storage-docs/
 https://martin.kleppmann.com/2020/07/06/crdt-hard-parts-hydra.html
 https://martin.kleppmann.com/2020/07/06/crdt-hard-parts-hydra.html
https://openai.com/research/scaling-kubernetes-to-7500-nodes
https://openai.com/research/scaling-kubernetes-to-7500-nodes

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 etcd
	2.2 Edge environment
	2.3 Deriving requirements
	2.4 Application deployment

	3 Design space
	3.1 Consistency and fault tolerance
	3.2 Addressing history
	3.3 Durability
	3.4 Value representation

	4 Implementation
	4.1 Architecture
	4.2 Data model
	4.3 API Guarantees
	4.4 Durability
	4.5 Synchronization
	4.6 Typing the values
	4.7 Exposed replication status
	4.8 Model overheads

	5 Evaluation
	5.1 Setup
	5.2 Starting at the edge
	5.3 Making the network reliable
	5.4 Providing an optimal network
	5.5 Collapsing the cluster

	6 Implications on applications
	7 Related work
	8 Conclusion
	References

