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Abstract
Application tail latency is a key metric for many services,

with high latencies being linked directly to loss of revenue.
Modern deeply-nested micro-service architectures exacerbate
tail latencies, increasing the likelihood of users experiencing
them. In this work, we show how CPU overcommitment by
OS threads leads to high tail latencies when applications are
under heavy load. CPU overcommitment can arise from two
operational factors: incorrectly determining the number of
CPUs available when under a CPU quota, and the ignorance
of neighbour applications and their CPU usage. We discuss
different languages’ solutions to obtaining the CPUs available,
evaluating the impact, and discuss opportunities for a more
unified language-independent interface to obtain the number
of CPUs available. We then evaluate the impact of neighbour
usage on tail latency and introduce a new neighbour-aware
threadpool, the friendlypool, that dynamically avoids over-
commitment. In our evaluation, the friendlypool reduces max-
imum worker latency by up to 6.7× at the cost of decreasing
throughput by up to 1.4×.

1 Introduction

As shown repeatedly by large companies including Google,
Amazon, and independent studies [5,10,11,28,32]: increased
latency reduces client retention and costs money. This is ex-
acerbated by modern micro-service architectures due to their
deep nesting [29, 36], leading to a higher likelihood of a tail
latency being observed by a user. Bursts of demand may also
be correlated [25], leading to resource demand surges.

As Table 1 shows, large CPU counts are now available
at many cloud providers. This leads to applications that can
scale to the number of CPUs available on the host in order to
handle larger volumes of requests [20, 26, 31]. However, they
assume that they operate alone on the host, and so can make
full use of the CPU resources. This assumption is often false,
leading to overcommitment [27]. Each application creates the
number of CPUs worth of threads, meaning the total threads

Table 1: Overview of the biggest VMs by CPU core count
available at large cloud providers.

Cloud provider vCPUs Instance type

AWS 192 c7i.metal-48xl
Azure 96 Standard_D96d_v5
GCP 360 c3d-standard-360

per CPU scales with the number of applications. This leads
to contention over the CPUs, leaving each application with
far less than the full host it was expecting to have.

CPU quotas are used to isolate applications on the same
host from using too much CPU time [34]. However, the inter-
faces that many applications use for determining the available
CPU resources do not encapsulate the CPU quota’s restric-
tions [17, 18]. This is in part due to the isolation only being
lightweight and so a leaky abstraction [4, 12]. This directly
leads to CPU overcommitment and high tail latencies.

CPU quotas also prevent an application from bursting its
CPU usage in order to handle demand surges. This leads to
requests being queued, increasing the latency observed, or
rejecting requests outright.

To take advantage of the larger nodes’ size and cost-
efficiency applications are packed tightly, aiming for high
utilisation [35]. However, when the these applications have
coinciding demand bursts they can contend over shared CPUs.
Since the number of CPUs available to an application is typ-
ically treated as a static constant they do not adapt to the
reduced CPU usage that they obtain. The CPU overcommit-
ment then leads to increased tail latencies.

In this work we show that CPU overcommitment is still
a problem in modern contexts (Section 2). We then draw
comparisons and corresponding evaluations from this for the
contributions of CPU quotas (Section 3 and 4) and neighbour
CPU load (Section 5). Finally, we present a new thread pool
design that dynamically avoids overcommitment, improving
tail latencies (Section 5.2).
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Figure 1: Structure of the applications and the latencies being
measured.

2 Overcomitment: OS Threads > CPUs

This section outlines the model of computation that we refer
to throughout this work, as well as defining overcommitment
and evaluating its impacts on tail latency.

Computation Model A single processor socket is formed
of multiple physical processing cores, each presenting poten-
tially multiple CPUs due to hyper-threading [9]. Each CPU is
exposed to the operating system (OS), which manages the ex-
ecution of OS threads over the many CPUs. These OS threads
are scheduled onto the CPUs based on a scheduling algorithm.
OS threads are preemptive, so they may not complete their
computation in one scheduling cycle before being taken off
the CPU.
cgroups [4] enable the assignment of CPU shares and a

CPU quota to a process. The OS scheduler, Linux’s CFS in
this case, packs OS threads to CPUs based on their share rela-
tive to all total shares of OS threads ready to be executed. The
scheduler also enforces the quota as the maximum amount of
time a process is able to run for in any given period. CPU quo-
tas are typically employed to prevent processes from hogging
CPU resources, particularly in multi-tenant environments.

Since OS threads are typically heavy-weight, modern lan-
guages use a design of lightweight threads [30]. These
lightweight threads are language-specific so require a runtime
to manage them, multiplexing them over OS threads created
by the runtime. The runtime’s OS threads are then commonly
partitioned into workers and waiters. Worker threads are small
in number and perform the CPU-bound work, while waiter
threads are greater in number and execute blocking operations,
spending most of their time in wait queues.

Overcommitment A well known result is that as the num-
ber of threads increases, coordination costs also increase, due
to contention over shared resources [22]. This also extends
to CPUs as once each CPU is fully utilized, adding further
threads increases coordination costs without increasing the
amount of useful work done. This situation is known as over-
commitment. However, considering the total quantity of use-
ful work is not the whole story, instead focusing here on
latency.

To study the effect of overcommitment throughout this
work we implement a simple program that spawns worker

(a) Queue latency decreases as more threads are used, up to the
number of CPUs. Fib latency remains low until overcommitment.

(b) Throughput gradually increases as more threads are used, up to
the number of CPUs.

Figure 2: Overall latency and throughput at various amounts
of OS threads in Rust. Workers have no contention.

(a) Queue latency decreases as more threads are used. Fib latency
increases with overcommitment.

(b) Throughput remains constant, limited by lock contention.

Figure 3: Overall latency and throughput at various amounts
of OS thread overcommitment in Rust. Workers have con-
tention over the fib computation starting with a lock at
fib(30).
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threads, each performing CPU-bound work, a naive fibonacci
(fib) sequence computation, computing fib(30). We drive
the workers at a target rate in an open-loop fashion, represent-
ing a uniform demand. We collect timing measurements at
three points, the time at which the work item is “received”
by the service and pushed into the queue (queue start), the
time the work item is pulled out of the queue by a worker
(fib start), and the time that the work item has finished being
processed (end). From these we derive the queue latency and
the fib latency, shown in Figure 1. We also calculate over-
all throughput of the process as the time taken to complete
divided by the total runtime.

The experiments in this paper were conducted on a single
machine running Linux 6.2.0 with a dual socket Intel Xeon
Silver 4112 Processor featuring 4 physical cores each with
hyper-threading, so 16 CPUs total. Experiments are run for
5 seconds with 5 repeats. Latency plots show points for all
repeats, throughput plots show the median with an error bar
between the minimum and maximum across repeats.

Figure 2 breaks down the total throughput and latency for
client requests at various numbers of threads in a Rust imple-
mentation. When the total system’s throughput is lower than
the request rate (fewer than 16 threads) requests must queue,
resulting in higher than optimal latency. However if the sys-
tem is overcommitted (more than 16 threads), each thread has
a lower effective throughput and hence increased fib latency,
getting worse with more overcommitment. This occurs be-
cause the worker thread pulls an item off the queue, starting its
fib latency timer, but due to overcommitment, the OS sched-
uler may choose to preempt the worker thread and run another
before the current one completes working on its item. The
original thread must then wait to be scheduled onto a CPU
again to continue work and report its result, stopping the timer.
The effect of overcommitment on the latency of each request
is exacerbated by contention over shared resources, a mutex
around the computation of fib(30) in this case, shown in
Figure 3. Since this is an extreme contention scenario, show-
ing the limit, we proceed only without contention to study the
most optimistic case.

In the rest of this work we will not consider queue latency as
it arises due to the overload of the service and other strategies
such as load shedding or horizontal scaling can be used to
mitigate it.

3 How Do Applications Tune Themselves?

When an application starts up it needs to perform some ini-
tialisation. This typically involves getting some information
about the environment and using that to set up some inter-
nal configuration parameters, such as threadpool sizes. This
section investigates how this initialisation works under the
presence of CPU quotas and the impacts that it can have.

Table 2: Lightweight threading mechanism, runtime, and CPU
source for each language.

Lang Thread Runtime CPU source

C++ Coroutine [3] Built-in CPU affinity
Go Goroutine [6] Built-in CPU affinity
Java Virt. threads [7] Built-in cgroup
Julia Task [8] Built-in CPU affinity
OCaml Eio fiber [14] Eio [13] CPU affinity
Rust Tokio task [16] Tokio [15] cgroup

CPU 1

CPU 2

Run queue

Time

(a) CPU quota, shared.

CPU 1

CPU 2

Run queue

Time

(b) CPU quota, alone.

Figure 4: Example schedulings, shown in scheduling periods
of 2 apps with CPU quotas equivalent to 1 CPU on a 2 CPU
system.

3.1 Working Under CPU Quotas

Assuming: Quotas in place.
Problem 1: Applications do not account for their
CPU quota when calculating the number of CPUs.

The logical conclusion from the previous section is that
applications should limit themselves to OS threads = CPUs, a
thread-per-core architecture [21], to avoid overcommitment
which should be easy to read from the environment.

Unfortunately, when applications are deployed with CPU
quotas, obtaining the correct CPU count becomes more
difficult. We would expect that an application should use
the formula: OS threads = quota cores, for its self-tuning,
where quota cores is quota time/scheduler period. How-
ever, despite the seeming ease of obtaining this from the
cgroups API, multiple languages do not obtain the cor-
rect number. Table 2 summarizes the approaches some pop-
ular languages use to obtain the number of CPUs avail-
able for the application. We observed that a large number
of languages are not cgroup aware, and so do not look
for their allocated CPU quota. Instead, most rely on the
OS system calls, such as sched_getaffinity [17] and
sysconf(_SC_NPROCESSORS_ONLN) [18], which do not re-
flect the CPU quota in place, instead returning the total num-
ber of CPUs in the system.

Since the CPU quota is an enforcement on maximum usage,
overcommitment of OS threads can easily happen when in-
correctly scaled, as shown in Figure 4a by the full run queue.
As shown in Section 2, overcommitment of OS threads to
CPUs results in increased latency due to preemption. Figure 5
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(a) Fib latency remains constantly low when matching threads to
CPU quota. Letting the runtime decide the number of threads leads
to a large fib latency, decreasing as CPU quota approaches number
of CPUs.

(b) Throughput is impacted by overcommitment of CPUs due to
incorrect automatic detection of CPU availability.

Figure 5: Impact of using an incorrect OS thread count when
under a CPU quota in Go.

presents the fib latency and the throughput from Go when
manually setting the optimal number of threads and when let-
ting the runtime determine it automatically. However, in this
experiment we place the applications in cgroups with CPU
quotas corresponding to varying numbers of CPUs. Since Go,
the cloud-native language [33], is not cgroup-aware it spawns
a number of OS threads equal to the number of CPUs on the
entire machine (16 in this case). This leads Go to having a
large overcommitment for most cases and sees an accordingly
high latency on its work. For the Go language, this has been
observed widely, including at Uber, a prominent user of Go,
having published their library to obtain the CPU quota from
the cgroup API to contain the issue [1].

Notably, other CPU containment mechanisms do not fea-
ture these limitations. CPU shares, which govern a weighting
for the time share a thread gets, are only a lower bound. CPU
affinity allows pinning a thread to a CPU but, working on the
thread-level, does not introduce a direct limitation on how
many threads can run.

3.2 Getting the Correct CPU Count

Assuming: Quotas in place.
Solution 1: Fix the syscall for number of CPUs to be
quota-aware, or add a new one.

Given that we know the interfaces languages use to deter-

mine the number of CPUs to use we see two complementary
solutions. Firstly, languages and their runtimes could be made
cgroup-aware. This is likely the fastest method to fix this
situation but requires that each language independently work
out their fix and correctly interpret the cgroup API. It also
places maintenance burden on the developers as new versions
of the cgroup API are added, such as with cgroups v1 and
v2. Secondly, as most languages already see fit to offload the
calculation to the OS, a new syscall could be added to obtain
the correct number of CPUs that the process should be using.
This would need to take into account the CPU affinity mask
for the process as well as implications of a cgroups CPU
quota. This solution would be portable between languages
and reduce the complexity required in them. Importantly, this
would encapsulate being cgroup-aware but also aim to in-
corporate future changes too. We leave the implementation
of these fixes out of the scope of this work, but note that the
results of their changes would follow the pattern shown by
the “Manual” thread count in Figure 5.

4 Capitalising On Spare Resources

Assuming that the issue with CPU quotas has been fixed, we
now look at limitations that are still imposed. To do this, we
extend our view broader than our single application, out to
the host and all the processes it may be running.

4.1 CPU Quotas Are Wasteful

Assuming: Quotas in place, OS threads = quota cores.
Problem 2: Applications without sufficiently busy
neighbours can see wasted CPUs that they can’t use.

When all applications are fully using their quota and the
sum of the quota cores is equal to the number of CPUs then the
system behaves well, each OS thread gets matched to a CPU.
However, such a case with constant work is unlikely, even
for batch jobs. When an application does not fully utilise its
quota then some portion of the CPU will be left under-utilised,
shown in Figure 4b. This wastage is clearly suboptimal from
a utilisation perspective and would ideally be avoided. Par-
ticularly this involves the application being burstable, often
in response to its demand. This is more common in modern
deployments with dense packing of applications to hosts.

4.2 Enabling Bursts

Assuming: Quotas in place, OS threads = quota cores.
Solution 2: Do not assign CPU quotas.

In order to solve the issue of applications with quotas be-
ing unable to burst up their usage we simply recommend
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CPU 1

CPU 2

Run queue

Time

(a) No quota, alone.

CPU 1

CPU 2

Run queue

Time

(b) No quota, shared.

Figure 6: Example schedulings, shown in scheduling periods
of 2 apps with no CPU quotas on a 2 CPU system.

removing the CPU quota unless strictly required. They have
been shown to have negative performance implications in
real-world contexts [2]. This can also be used as a stopgap
solution until better support for detecting the number of CPUs
based off CPU quotas is added (Section 3).

5 The Cost Of Ignoring Your Neighbours

This section analyses issues arising when other applications
(neighbours) are also present on the host. We assume that CPU
quotas are not in place for the applications, but the scheduler
is fair, as is Linux’s CFS.

5.1 Noisy Neighbourhood

Assuming: No quotas in place, OS Threads = CPUs.
Problem 3: Applications ignore their neighbours’ us-
age when calculating the number of threads to use.

Having removed the CPU quotas on applications, each
application is free to create a number of threads equal to the
number of CPUs as shown in Figure 6a. Provided that the
sum of busy threads at any instant in time does not exceed
the number of CPUs the scheduler should be able to map
each thread to its own distinct CPU. However, in reality the
overcommitment of OS threads to CPUs is severely higher
than 1, by a factor of the number of applications, as each will
spawn one thread per CPU, shown in Figure 6b. Unknowingly
to each application, there is contention over the CPU cores.

CPU shares should be used to ensure that each application,
when it is busy, has a minimum portion of CPU time. As-
suming that all applications on a host are busy at the same
time, then they will each be given their CPU shares. In this
scenario each application is then directly subject to its own
overcommitment. This effectively partitions the applications
from each other, pushing the impact of overcommitment di-
rectly, and solely, onto them. This means that applications that
do not overcommit their share will not observe the associated
increased latencies. However, those applications that do over-
commit will only impede the performance of their own other
threads, and so observe the associated increase in latencies
seen previously in Figures 2 and 3.

(a) Ignoring neighbour usage leads to a large fib latency, increasing
with number of neighbours. A collaborative approach reduces this.

(b) Ignoring neighbour usage maintains a high throughput, whereas
partitioning CPUs by reducing thread count limits it.

Figure 7: Performance when sharing a node with neighbours
using the Rust app. Ignorant: threads = CPUs for each pro-
cess. Collaborative: the dynamic friendly threadpool. Opti-
mal: threads = CPUs / processes. This highlights the trade-off
space between latency and throughput from overcommitment.

There is now a conflict, between having enough OS threads
available to be able to handle bursts when neighbours are not
fully utilising their share, and not impacting latency when
neighbours are busy. Figure 7 shows the effect on latency of
overcommitting OS threads to CPUs when neighbours are
busy, looking at the “Ignorant” kind.

5.2 Dynamically Adapting To Neighbours

Assuming: No quotas in place, OS Threads = CPUs.
Solution 3: Dynamically alter the number of OS
threads that perform work for an application.

To handle the adaptive nature of neighbour usage the pool
of worker threads needs to dynamically scale up and down.
For this, we introduce the friendlypool, a threadpool that is
friendly to its neighbours and is aware of their usage, marked
as Collaborative in Figures. It works by simply spawning
another thread that is in charge of periodically obtaining the
number of the CPUs that the current process should use and
scaling the threadpool to that number. When scaling, we do
not destroy or create OS threads, but rather they each watch
the number of desired active threads and pull work or not,
accordingly. Initially one OS thread is created per CPU.

The number of OS threads the current application should
be using is equivalent to its proportion of the usage of the
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(a) The overcommit factor is directly proportional to the fib latency.

(b) The overcommit factor is directly proportional to the throughput.

Figure 8: Performance of the collaborative friendly pool with
variable overcommitment factor.

CPUs in the last period. For instance, if the application is
alone on the host, then it will be consuming all of the CPU,
and so the usage will be 100%. However, say another identical
application is run, then the usages may be evenly split, each
50%. This is a key property obtained from the fairness of the
OS thread scheduler. This usage can then be scaled by the
number of CPUs in the system to count how many OS threads
should be active. The calculation is:

active threads =
⌈

O · cpu timeself
cpu timeall

·CPUs
⌉

A control thread polls the “cpu time” values periodically,
limited by how often they are updated by the Kernel, the clock
tick frequency. This defaults to 100Hz in our setup, and so
this is evaluated every 10ms. When a worker thread has no
work to perform, it parks itself, waiting for the control thread
to unpark it when it should execute.

Figure 7 presents the results of different thread pool divi-
sion strategies in comparison to an “Optimal” allocation. In
Figure 7a we observe that the collaborative friendly pool does
improve latency of the program compared to a simple static
thread pool. However, Figure 7b highlights that the through-
put of the friendly pool does not match that of the ignorant
pool. This drop in throughput is due to the overhead of the
“frontend” thread generating the work, which is masked when
more worker threads are active, as they enable concurrent
processing of the requests. This decreased throughput is also
present for the optimal allocation of threads (one per CPU).

To traverse the trade-off space between latency and through-
put we can augment the formula for the number of active
threads by a variable O. This is an overcommitment fac-

tor, specifying by what amount the number of active threads
should overcommit the CPUs and is intended to be tuned for
different applications. Figure 8 shows the impact of choosing
some sample overcommitment factor values, highlighting the
trade-off between tail latency and throughput and the space
that this parameter enables the user to traverse.

We believe that this approach of making the thread pool dy-
namic is scalable to current language runtimes for lightweight
threading. They follow the typical pattern of having worker
threads that are CPU-bound and blocking threads that con-
sume negligible CPU, waiting for operations to complete. The
lightweight threads can then be multiplexed over the currently
active worker threads, enabling improved latency.

6 Related Work

Janssen [24] provides a motivation for moving towards dy-
namic threadpools that take into account multiple dimensions
in order to maximise performance, particularly in the pres-
ence of neighbours. However, the performance in focus is
throughput, not tail latency as we argue for. Additionally, our
work focuses purely on tuning the threadpool for CPU usage.

Grand central dispatch [19] for Darwin platforms acts as
a per-application threadpool manager. It presents interfaces
such as queues for the application to schedule work in multi-
ple classes, from which the dispatch runtime can order execu-
tion on OS threads. The runtime monitors the CPU configu-
ration to balance work, dynamically scaling the thread pool.
This solution shares similarities in design with our threadpool
but is more heavily tied into the language runtime with its
work dispatch design.

Huang et al [23] make similar arguments to us focusing on
burstable containers, they however use CPU sets to dynam-
ically scale the number of threads. Instead, we simply park
a thread, or send it to sleep, awaiting its next runnable time.
This lets the OS scheduler treat the thread as not runnable,
rather than requiring more user-level interventions.

7 Conclusion

We have presented an analysis of CPU overcommitment from
OS threads and the various ways that this situation can arise,
focusing on CPU quotas and ignorance of neighbour CPU us-
age. We presented a new threadpool design, the friendlypool,
that dynamically scales the number of active worker threads
to match the number of available CPUs and showed that it sig-
nificantly reduced latencies, by up to 6.7×. However, it comes
at the cost of some throughput, up to 1.4×, which we mitigate
through an overcommitment factor, giving the user an option
for traversing the trade-off of latency and throughput. This
threadpool design is applicable to modern lightweight thread
runtimes, enabling the potential for reducing tail latencies
from the core of applications in a scalable manner.
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