
AMC: Towards Trustworthy and Explorable CRDT
Applications with the Automerge Model Checker

Andrew Jeffery
University of Cambridge

Cambridge, United Kingdom
andrew.jeffery@cst.cam.ac.uk

Richard Mortier
University of Cambridge

Cambridge, United Kingdom
richard.mortier@cst.cam.ac.uk

Abstract
Conflict-free Replicated Data Types (CRDTs) enable local-
first operations and asynchronous collaboration without the
need for always-on centralised services. CRDTs can have
a high overhead, so implementations need to be optimised,
but this optimisation can lead to bugs despite the use of test
suites and fuzzing. Furthermore, using CRDTs in applications
is complex, observing unexpected conflict resolution, issues
synchronising documents and difficulties implementing ap-
propriate data models. Automerge is a library, exposing a
JSON CRDT, that sees users having difficulties in modelling
their problems, understanding their edge cases and imple-
menting applications correctly. We introduce the Automerge
Model Checker (AMC), empowering application developers
to check properties about their implementations and explore
them dynamically. AMC can check a range of applications as
well as being able to check properties about the core of Au-
tomerge itself, helping to makemore trustworthy Automerge
applications.

AMC is available open-source at
github.com/jeffa5/automerge-model-checker.

CCS Concepts: • Software and its engineering → Formal
software verification; • Computer systems organization
→ Peer-to-peer architectures.

Keywords: conflict-free replicated data types, model check-
ing, distributed systems, eventual consistency

ACM Reference Format:
Andrew Jeffery and RichardMortier. 2023. AMC: Towards Trustwor-
thy and Explorable CRDT Applications with the Automerge Model
Checker. In 10th Workshop on Principles and Practice of Consistency
for Distributed Data (PaPoC ’23), May 8, 2023, Rome, Italy.ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3578358.3591326

PaPoC ’23, May 8, 2023, Rome, Italy
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0086-6/23/05.
https://doi.org/10.1145/3578358.3591326

1 Introduction
Conflict-free Replicated Data Types (CRDTs) [35] are data
structures that enable concurrent operation with consistent
merge results. There are many CRDTs available, represent-
ing counters, maps, sets, lists [35], rich-text [28], trees [29],
filesystems [39, 42], and JSON documents [21]. Several li-
braries are available that provide a core CRDT and function-
ality to handle synchronisation and persistence, primarily
Automerge [22, 36] and Yjs [32, 33, 38] but many others are
available [2–10, 13, 40].

Compared to raw documents, CRDTs incur an overhead to
store the history of edits and information to perform merge
operations between divergent histories. This leads to new
data structures [41], storage formats [19] and processing
methods [12, 41] being developed to provide performant and
efficient implementations. These new developments pose
risks for the correctness of the implementations, requiring
extensive testing and fuzzing separately from formal verifica-
tion of the abstract CRDT itself [21]. Whilst mechanized veri-
fication of CRDTs [11] is available it operates on constrained
DSLs and cannot aid more optimized implementations, or
applications built on them.

Despite the emphasis on performant, efficient, and correct
CRDT implementations, the libraries can still be challenging
to use due to the complexity in understanding how sequences
of CRDT operations will be resolved. This manifests as chal-
lenges in predicting conflict resolution, correctly handling
synchronisation, and correctly implementing data models
on top of the CRDT library. These can lead to applications,
and users, losing data along with users seeing confusing and
unexpected behaviour, such as interleaving [23].

Automerge is a library, modelling JSON with an operation-
based CRDT, that has undergone a rewrite to attain higher
performance and efficiency. The use of fuzzing and a thor-
ough test suite aid the correctness of the library but do not
prevent complex bugs from arising [14]. Additionally, these
do not solve issues experienced by developers such as writes
disappearing [18], issues synchronising across peers [30]
and persistence [34].

This paper introduces theAutomergeModel Checker (AMC),
a library for building model checked Automerge applications
in Rust. AMC deterministically explores the behaviour of
the Automerge application to cover both common and edge

44

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0003-0440-0493
https://orcid.org/0000-0001-5205-5992
https://github.com/jeffa5/automerge-model-checker
https://doi.org/10.1145/3578358.3591326
https://doi.org/10.1145/3578358.3591326
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3578358.3591326&domain=pdf&date_stamp=2023-05-08

PaPoC ’23, May 8, 2023, Rome, Italy Andrew Jeffery and Richard Mortier

 ServerApp

Client

Driver

Client

Driver

 ServerApp

Client

Driver

Client

Driver

Figure 1. High level architecture of AMC. Developers
implement the Drivers and the App.

case behaviour. AMC provides a system for adding this func-
tionality by application developers without deep knowledge
of Automerge itself, instead focusing on the desired applica-
tion’s business logic and properties. The key contributions
of this work are that AMC:

1. can check user-defined properties of applications built
on Automerge; three such applications are presented
based on counters, moving items in a list, and todos, §3.

2. enables developers to dynamically explore the conflict-
resolution behaviour of their Automerge applications, §4.

3. can check theAutomerge library implementation, rather
than just a high level description of the CRDT, §5.

2 Automerge Model Checker
Automerge application architecture. Each Automerge

instance represents a JSON document, capturing operations
performed on it and providing extra functionality such as
historical views, efficient storage and logic for synchronisa-
tion. The document stores a JSON object at the root, termed
a map in Automerge, which has string keys and values of
either a map, an ordered list, text, or some scalar type such as
String, Bytes, Counter, Int, Boolean or Null. Lists store
an ordered collection of maps, lists or scalars. Text is a spe-
cialised object for use in collaborative text editing.

Applications leveraging Automerge primarily target local-
first operation, enabling users to work offline and synchro-
nise their changes once they reconnect. To synchronise, there
can either be a central server, able to synchronise changes
to clients who are not online at the same time, or clients
can synchronise directly with each other in a peer to peer
fashion. AMC can represent both strategies since the former
is a peer in the latter strategy that performs no operations.

Internally, Automerge stores operations in changes which
encapsulate the operation along with metadata and a list
of hashes of parent changes. These changes are synchro-
nised and applied to other documents to share the operations.
Changes are arranged in a directed acyclic graph based on
their hash which is used for synchronisation and analysing
divergence between peers.

Overview of AMC. We will use a shared counter being
incremented and decremented as a running example. The
initial document looks like {"value":0}.
To model an Automerge application, AMC separates the

logic interacting with the Automerge document from the
triggering of that logic. In our example the increment and
decrement actions operate on the document, and we would
have some other logic to trigger those actions. This enables
actions to be interleaved in the model checker, enumerat-
ing different execution orderings. Application logic executes
atomically on the document, preventing concurrent interac-
tions such as receiving a synchronisation message.
AMC comprises four components, visualised in Figure 1.

Developers using AMC implement the application (app),
which they can reuse for their real application, and the dri-
ver, specifically for AMC. These components are written in
Rust. The application interacts with the Automerge docu-
ment, being triggered by inputs to mutate and inspect the
document before producing outputs. For our example appli-
cation the inputs would be either Increment or Decrement,
and our outputs could be the new value. The driver creates
the inputs to trigger application functions. The driver can
be simple, only sending events and ignoring responses, or
complex, handling responses too and conditionally sending
more inputs. A driver for our example application would
emit one of the inputs, Increment or Decrement, and ignore
responses. Multiple instances of the application are spawned
during the model checking, each having multiple drivers to
exercise different input orderings.

The server and client are implemented by AMC itself and
wrap the application and driver, respectively. The server han-
dles synchronising with peers through different strategies:
sending raw changes, using the built-in Automerge sync pro-
tocol, or saving the document and sending it in its entirety.
Each of these has different characteristics and use cases, so
each can be checked by AMC in separate runs. AMC can also
explore all combinations of when to synchronise, adding the
potential for batches of changes to be sent at once. Servers
can also be restarted during checking to ensure that state
is correctly persisted, including synchronisation state. The
client simply wraps the driver into AMC. Internally, AMC
connects the client and server with a reliable, ordered connec-
tion. This means that operations from a client will happen in
series but may be interleaved with those from other clients.
This network also connects servers to each other, meaning
that synchronisation messages will be delivered in order.

Adding properties. Developers will want to express prop-
erties over application behaviour to ensure properties hold.
To support this, AMC provides the ability to define prop-
erties as functions over the model, including history and
configuration, and the current state of the network. This en-
ables developers to, for example, iterate over the Automerge
document of each server and assert facts on them, leveraging

45

AMC: Towards Trustworthy and Explorable CRDT Applications with the Automerge Model Checker PaPoC ’23, May 8, 2023, Rome, Italy

|_model, state| {
if !syncing_done(state) { return true; }
let mut expected = 0;
for msg in state.history {
match msg.input() {
Some(Msg::Increment) => { expected += 1; }
Some(Msg::Decrement) => { expected -= 1; }
None => {}

}
}
if let Server(s) = state.actor_states.first() {
let actual = s.document().get(ROOT, "value");
return actual.to_i64() == expected;

}
panic!("Could not find a server!");

}

Listing 1. Implementation of the correctness property for a
counter, syntax simplified for brevity.

the power of the Rust language, rather than a constrained
DSL. This can be aided by the recording of application inputs
and outputs to build a history for checking properties that
rely on the path of operations currently performed.
Properties can be expressed as either always properties,

holding for every state, or sometimes properties, holding at
least once during the run of the model checking. During
checking, these properties are evaluated at every step and
any discoveries are recorded: counter-examples for always
properties and examples for sometimes properties. Running
executes until the state space is exhausted or all properties
have discoveries found.
When writing properties it is common to consider the

case when all peers are synchronised. To aid in writing these
properties, AMC provides a utility for checking that all peers
have finished synchronising any local changes. This is imple-
mented as a check that no server has outstanding changes to
propagate and that the network has delivered any pending
synchronisation messages.
For our example application, once peers have synchro-

nised they should always have the correct value according
to the number of increments and decrements applied at that
point. The messages applied to the applications are recorded
for model checking, making them available in properties.
This property an always property, Listing 1 shows how it
might look when implemented in Rust.

Running the checker. To run the model checker the
model needs to be built into a binary using an AMC library
which handles setting up the CLI interface. During execution,
AMC leverages the Stateright [31] model checker to perform
the search. AMC builds the user-supplied model into an in-
stance of the actor model in Stateright, treating clients and
servers as actors sending messages to each other over a FIFO

Property Always "correct value" FAILED
counterexample, Path[6]:
- Deliver{src:2, dst:0, msg:Input(Increment)}
- Deliver{src:4, dst:1, msg:Input(Increment)}
- Timeout(0, Server(Synchronise))
- Deliver{src:0, dst:1, msg:SyncChange([...])}
- Timeout(1, Server(Synchronise))
- Deliver{src:1, dst:0, msg:SyncChange([...])}

Listing 2. Failed counter property, syntax simplified and
content elided (. . .) for brevity.

ordered reliable network. AMC additionally sets timers to
trigger synchronisation and server restarts, made possible
through our upstream contributions to Stateright for differ-
entiable timers [17]. This separation aids in the reliability
of the checking as Stateright can be used in other projects
and improvements to Stateright will in turn improve AMC.
Whilst AMC currently only works with applications built in
Rust, it would be feasible to extend this to other languages
that use Automerge bindings, such as JavaScript.

AMC can use different strategies to explore the state space.
Breadth-first search is useful for finding the shortest paths
for counter-examples but incurs a large memory overhead.
Depth-first search quickly checks deep, complex interactions
but discoveries are unlikely to be the shortest, this mode uses
considerably less memory. Iterative depth-first search com-
bines these approaches, performing depth-first searches with
increasing maximum depths to find the shortest discoveries
with low memory usage but increased time. This was made
possible through our upstream contributions to add depth
tracking and limiting in Stateright [16]. Large application
models can lead to large state spaces, making these searching
methods impractical due to resource constraints; a stateless
checker may be more suitable for these complex applications.
Timers can be used for triggering synchronisation and

restarts at servers. Timeouts for these timers are injected
at every possible place by Stateright during checking. The
use of timers enables checking paths where servers have not
eagerly tried to synchronise, instead batching changes, and
restarting nodes at different points.
Running our example with an Int value type, we get a

counter-example. The output gives a path of messages that
triggered the counter-example, shown in Listing 2. Chang-
ing the datatype to an Automerge Counter enables tracking
of intent, fixing this issue when also coupled with consis-
tent initialization logic, expanded on later. This example is
included in the results table for comparison, Table 1.

3 Checking Automerge applications
AMC aids developers of Automerge applications to catch
bugs arising from the complex interactions of their applica-
tion behaviour. We present three applications, highlighting

46

PaPoC ’23, May 8, 2023, Rome, Italy Andrew Jeffery and Richard Mortier

Table 1. Model checking results. All runs used iterative DFS, results are presented for the deepest traversal only, using 3
servers eagerly syncing with changes, no restarts. CI = Consistent initialization. LoC includes library and CLI code.

App Version Total states Unique states Max depth Duration (s) Correct LoC

Counter

Initial 10,919 5,684 8 0.071 ✗

386Counter type 10,963 5,697 8 0.078 ✗
CI 10,779 5,618 8 0.080 ✗
Counter type & CI 34,528,681 10,576,193 19 110.796 ✓

List moves Initial 10,949 5,694 8 0.091 ✗ 271

Todos

Initial 23,735 13,779 8 0.176 ✗

554Random IDs 23,304 14,128 8 0.193 ✗
CI 22,263 13,027 8 0.178 ✗
Random IDs & CI 25,653,499 7,826,621 19 125.461 ✓

Automerge
Maps 1,259,686 389,187 19 30.495 ✓

1179Lists 1,497,109 473,715 19 37.124 ✓
Text 1,497,109 473,715 19 36.171 ✓

how AMC can aid developers to catch bugs by efficiently
finding the issues. These models assume correctness of Au-
tomerge, which will be explored separately in §5.

Table 1 shows the states, depth and duration resulting from
AMC runs for the versions of each application presented. All
model checking runs presented were executed a single time
using iterative depth-first search. The machine was an Azure
Cloud VM (Standard D8s v3) with 8 cores and 32 GiB of
RAM, running Ubuntu Linux 20.04 and the programs were
compiled with Rust version 1.66.1.

Counter. Continuing our example from the previous sec-
tion we still had a failure of the property which stems from
the issue of Automerge not merging unrelated histories. In
this particular example the Counter type is not the same
instance between peers, so increments applied to it end up
applying to separate instances. These semantics are a topic
of debate around Automerge [18]. Adding some logic to con-
sistently initialise the counter on each peer gives us the fully
working solution. Having setup logic for consistent initialisa-
tion is common practice to ensure a common starting point,
similar to schema migrations in databases. However, extend-
ing this to schema changes during the application life cycle is
more complicated, requiring solutions such as Cambria [27].

Listmoves. The second application ismoving itemswithin
a list. This application starts with a list of three items and
tries to move one item within the list. Without a native move
operation one is typically implemented as a deletion followed
by an insertion, as done here. The property to check is that
after moving items within the list the same items exist as
before. Checking this model with AMC finds a path to an
invalid state where items have been duplicated in the list,
shown in Figure 2. This is a known issue that requires native

['a', 'b', 'c'] ['a', 'b', 'c']

['c', 'a', 'b'] ['c', 'a', 'b']

['c', 'c', 'a', 'b']['c', 'c', 'a', 'b']

Move
2 to 0

Synchronise

Figure 2. Example of a problematic trace in amc-moves.
List items should not be being duplicated.

support in the CRDT [20] so there is currently no fix. How-
ever, it does serve to show the efficiency of checking for the
issue, aiding library developers when adding the operation
to the libraries.

Todos. The third application is managing a group of todo-
list items. As demonstrated from the list moves application,
storing items in a list can lead to unintended side-effects. Due
to this, our todo application chooses to give each todo an ID
and store them in a map keyed by this ID. Presenting these
todos to the user could then be handled by a wrapper that
orders the entries by some criteria. Drivers can try to create
new todos, update existing todos, toggle their completion
status, and remove them. For checking, only creation and
removal are enabled. The property for our model is that, after
synchronisation, all peers should have the same number
of todos as if the operations were performed on a single
application instance, i.e. they should not clash. To implement
this property, recorded history of application inputs and

47

AMC: Towards Trustworthy and Explorable CRDT Applications with the Automerge Model Checker PaPoC ’23, May 8, 2023, Rome, Italy

{} {}

{'1': {...}} {'1': {...}}

{'1': {...}}{'1': {...}}

Add todo

Synchronise

Figure 3. Example of a trace in amc-todo with the initial
version. The IDs should not clash.

outputs is replayed, tracking how many todos would be
present at each point.

The initial version starts out with using sequential IDs for
each todo. When a client asks for a new todo to be created,
the application generates an ID by taking the highest ID and
incrementing it by 1. Checking this model quickly finds that
sequential IDs are not suitable in this instance: concurrently
creating todos leads to a clash in IDs (Figure 3).
Changing from sequential IDs to random IDs, using a

seeded RNG for checking, contributes to a fix. Adding con-
sistent initialization logic is also required to ensure todos are
added to the same map within Automerge. This model has
more functionality than needed to produce the initial fail-
ures. After small runs have succeeded, other combinations
can be checked by enabling updates to existing todos and
toggling of completion status. This will increase the state
space to search and so the time required to check, making it
important to work with smaller models first.

4 Dynamically exploring models
Once developers integrate their application’s business logic
with AMC, they may not want to define, or may not fully
know, the properties they expect. Exploration of the inter-
actions between peers with the custom logic is designed to
help with this, as well as debugging failing properties. Rather
than a DFS, BFS or iterative DFS, the exploration mode uses
an on-demand checker, contributed to Stateright as part of
this work [15]. This checker is lazy until asked to check
new states by the web UI, shown in Figure 4. This means
that models can be explored without the need of powerful
machines whilst still using the full original model, inher-
iting properties, following through actions, and exploring
different pathways with the ability to retrace steps.
The ability to work through the model on-demand is

coupled with the ability to efficiently jump to a specific
path. When a broken property is found during checking, the
checker outputs the path to the final state for passing to the
explorer. The explorer then iterates through the path, calcu-
lating the states on-demand, to reach the desired state. This

can be particularly useful for developers exploring paths for
violations that may be found on more powerful machines.

5 Checking Automerge
For checking Automerge itself, the application exposes a
simplified version of the Automerge API. There is one driver
per function in this simplified API. The application functions
are split by object type: for map objects drivers can either put
or delete values, for lists and text they can insert or delete.
When the values are counters increment operations are also
added. For checking, the documents are initialised with the
required object at a preset location and results presented
in Table 1 are for string values. Splitting checker runs by
types of objects enables us to limit the state space to search,
making checking of particular areas feasible. This is safe as
operations on an object do not affect other objects.
Each driver sends only an initial message, avoiding han-

dling of outputs. This means that operations can have no
effect when they reach the application if they act on an
invalid key or index. For instance, indices that drivers use
for list operations are pre-programmed rather than having
to perform a get or length call followed by the operation.
This helps to keep the checking efficient and avoid the doc-
ument changing between two dependent actions, such as
getting the length of a list and acting on that, emphasising
the importance of atomically working on the document. Ad-
ditionally, to keep the state space small, our checking uses
one key/index to focus on conflicts. We expect that this could
be expanded to larger scenarios with more optimisations.

Properties. Automerge has a few high-level safety prop-
erties that should hold during execution, explained here.
One of the main properties of a CRDT is that it is con-

vergent, that is, after synchronisation has finished all peers
should have the same view of the data. This is checked with
an always property that ensures all documents have the same
values observed from walking the JSON document.

Saving and subsequently loading a document is a key prop-
erty used for Automerge applications, focusing on local-first,
offline operation. To ensure this behaviour during checking
an always property is added that checks, at every state, that
the document can be saved and loaded to reconstruct the
same document.
During execution, an application could reach a state of

internal failure when using Automerge. To detect this an-
other always property is added to check that no errors were
produced. This allows errors to be easily reproduced, rather
than aborting execution directly with a stack trace.
In addition to interacting with and checking the latest

state of the document, historical versions of the document
can be inspected. This enables checking more complex inter-
nals of Automerge for reading historical states. This works
by means of an always check that, for each document, con-
structs historical documents from the observed changes and

48

PaPoC ’23, May 8, 2023, Rome, Italy Andrew Jeffery and Richard Mortier

Figure 4. Web UI for the explore mode, showing a failure in the initial counter application.

compares the corresponding historical view of the current
document with each historical document.

6 Related work
Katara [25] is a tool for synthesizing verified CRDT designs
from sequential data type implementations. Whilst the syn-
thesized CRDT designs are verified, ensuring correctness,
they lack an implementation, leading the verified design to
drift from an implementation. AMC instead aims to check
that existing implementations, which use complex logic for
performance, are correct. AMC could potentially be applied
to the implementations of these generated CRDTs.
VeriFX [11] provides a framework for describing the se-

mantics of CRDTs at a high level and checking properties
about the model. Additionally, these can synthesise imple-
mentations of the CRDTs into executable code. This approach
is useful for creating new CRDTs however most CRDT li-
braries still have lots of other functionality that would re-
main to be implemented. Moreover, this approach does not
aid application developers using these synthesised CRDT
libraries, leaving them to instead work through an abstract
model in an unfamiliar language to understand the edge-
cases. AMC instead provides a more dynamic and direct way
for developers to explore the behaviour of their applications.

Fuzz testing using tools like libFuzzer [37] and AFL [1, 26]
are increasingly prevalent for checking implementations of
CRDTs, yet rarely focus on the higher-level aspects, instead
focusing on checking parsing logic of serialized data. These
approaches also do not aid application developers using the
libraries in understanding the behaviour they experience.
AMC focuses efforts on the high-level aspects of the CRDT
library and applications built on-top, as well as providing
functionality for checking lower-level properties.

Implementing CRDTs and their components efficiently has
many challenging aspects and work to improve the storage
and memory usage [19], synchronisation [24], and process-
ing speed [12] is widespread. It is due to this added imple-
mentation complexity that more rigorous testing approaches
are being seen. As the implementations get more performant
and efficient, checking them, such as with AMC, becomes
more practical as a larger state space can be explored in the
same time with the same resources. With this larger state
space, AMC can check more complex interactions, providing
more trust in the implementation and optimisations.

7 Conclusions
This paper presented AMC, the Automerge Model Checker,
to aid in exploring and checking the properties of applica-
tions built on the Automerge CRDT library and the core
library itself. AMC provides developers with a UI to dy-
namically explore the interactions of their application logic.
AMC can aid developers in finding failing properties in their
application implementations and then check the fixed imple-
mentations for correctness. Future work could extend this
to extract statistical properties of the interactions as well as
improving the efficiency of checking to enable more complex
models. This approach could be extended to checking applica-
tions written in other languages that use Automerge as well
as other CRDT implementations, easing the exploration of
their features. Overall, AMC helps developers of Automerge
applications to have more trust in, and understanding of,
their applications.

Acknowledgments
For the purpose of open access, the author has applied a Cre-
ative Commons Attribution (CC BY) licence to any Author
Accepted Manuscript version arising from this submission.

49

AMC: Towards Trustworthy and Explorable CRDT Applications with the Automerge Model Checker PaPoC ’23, May 8, 2023, Rome, Italy

References
[1] American fuzzy lop plus plus (afl++). https://aflplus.plus/. (accessed:

2023.02.23).
[2] Client-server communication framework based on optimistic ui, crdt,

and log. https://logux.io/. (accessed: 2023.02.24).
[3] Crdts in clojure(script) with edn serialization. https://github.com/

aredington/schism. (accessed: 2023.02.24).
[4] Dart implementation of conflict-free replicated data types (crdts). https:

//github.com/cachapa/crdt. (accessed: 2023.02.24).
[5] Live information sharing. https://m-ld.org/. (accessed: 2023.02.24).
[6] Minimal peer-to-peer database, based on kappa architecture. https:

//github.com/kappa-db/kappa-core. (accessed: 2023.02.24).
[7] An open source cybersecurity protocol for syncing decentralized graph

data. https://github.com/amark/gun. (accessed: 2023.02.24).
[8] Replicated data types in akka. https://doc.akka.io/docs/akka/2.

6.3/typed/distributed-data.html#replicated-data-types. (accessed:
2023.02.24).

[9] Replicated object notation. http://replicated.cc/. (accessed: 2023.02.24).
[10] Yorkie is a document store for collaborative applications. https://

github.com/yorkie-team/yorkie. (accessed: 2023.02.24).
[11] Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix. Verifx: Correct

replicated data types for the masses, 2022.
[12] Seph Gentle. 5000x faster crdts: An adventure in optimization. https:

//josephg.com/blog/crdts-go-brrr. (accessed: 2023.02.23).
[13] Seph Gentle. The world’s fastest crdt. wip. https://github.com/josephg/

diamond-types. (accessed: 2023.02.23).
[14] Orion Henry. rework how skip works to push the logic into node. https:

//github.com/automerge/automerge/pull/531. (accessed: 2023.02.23).
[15] Andrew Jeffery. Add an on-demand checker in stateright. https:

//github.com/stateright/stateright/pull/30. (accessed: 2023.04.04).
[16] Andrew Jeffery. Add depth tracking and limiting in stateright. https:

//github.com/stateright/stateright/pull/38. (accessed: 2023.04.04).
[17] Andrew Jeffery. Named timers in stateright. https://github.com/

stateright/stateright/pull/42. (accessed: 2023.04.04).
[18] Martin Kleppmann. Behaviour of concurrently created objects un-

der the same key. https://github.com/automerge/automerge-classic/
issues/4. (accessed: 2023.02.23).

[19] Martin Kleppmann. Crdts: The hard parts. https://martin.kleppmann.
com/2020/07/06/crdt-hard-parts-hydra.html. (accessed: 2023.02.23).

[20] Martin Kleppmann. Moving elements in list crdts. In Proceedings of the
7th Workshop on Principles and Practice of Consistency for Distributed
Data, PaPoC ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[21] Martin Kleppmann and Alastair R. Beresford. A conflict-free replicated
json datatype. IEEE Transactions on Parallel and Distributed Systems,
28(10):2733–2746, 2017.

[22] Martin Kleppmann and Alastair R Beresford. Automerge: Real-time
data sync between edge devices. In 1st UK Mobile, Wearable and
Ubiquitous Systems Research Symposium (MobiUK 2018). https://mobiuk.
org/abstract/S4-P5-Kleppmann-Automerge. pdf, pages 101–105, 2018.

[23] Martin Kleppmann, Victor B. F. Gomes, Dominic P. Mulligan, and
Alastair R. Beresford. Interleaving anomalies in collaborative text
editors. In Proceedings of the 6th Workshop on Principles and Practice of
Consistency for Distributed Data, PaPoC ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[24] Martin Kleppmann and Heidi Howard. Byzantine eventual consistency
and the fundamental limits of peer-to-peer databases, 2020.

[25] Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and
Joseph M. Hellerstein. Katara: Synthesizing crdts with verified lifting,
2022.

[26] lcamtuf. american fuzzy lop. https://lcamtuf.coredump.cx/afl/. (ac-
cessed: 2023.02.23).

[27] Geoffrey Litt, Peter van Hardenberg, and Orion Henry. Cambria:
Schema evolution in distributed systems with edit lenses. In Proceed-
ings of the 8th Workshop on Principles and Practice of Consistency for
Distributed Data, PaPoC ’21, New York, NY, USA, 2021. Association
for Computing Machinery.

[28] Geoffrey Litt, Sarah Lim, Martin Kleppmann, and Peter van Harden-
berg. Peritext: A crdt for collaborative rich text editing. Proc. ACM
Hum.-Comput. Interact., 6(CSCW2), nov 2022.

[29] Stéphane Martin, Mehdi Ahmed-Nacer, and Pascal Urso. Abstract
unordered and ordered trees crdt, 2012.

[30] Andy Matuschak. Trade-offs: sparse document structure / syncing
many documents? https://github.com/automerge/automerge-classic/
issues/342. (accessed: 2023.02.23).

[31] Jon Nadal. A model checker for implementing distributed systems.
https://github.com/stateright/stateright. (accessed: 2023.02.23).

[32] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Yjs:
A framework for near real-time p2p shared editing on arbitrary data
types. In Proceedings of the 15th International Conference on Engineering
the Web in the Big Data Era - Volume 9114, ICWE 2015, page 675–678,
Berlin, Heidelberg, 2015. Springer-Verlag.

[33] Petru Nicolaescu, Kevin Jahns, Michael Derntl, and Ralf Klamma. Near
real-time peer-to-peer shared editing on extensible data types. In Pro-
ceedings of the 2016 ACM International Conference on Supporting Group
Work, GROUP ’16, page 39–49, New York, NY, USA, 2016. Association
for Computing Machinery.

[34] Roger Qiu. Efficiently persisting on every change. https://github.com/
automerge/automerge-classic/issues/331. (accessed: 2023.02.23).

[35] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
Conflict-free replicated data types. In 13th International Conference
on Stabilization, Safety, and Security of Distributed Systems, SSS 2011,
pages 386–400. Springer LNCS volume 6976, October 2011.

[36] Automerge team. Rust implementation of automerge. https://github.
com/automerge/automerge. (accessed: 2023.02.23).

[37] LLVM team. libfuzzer – a library for coverage-guided fuzz testing.
https://www.llvm.org/docs/LibFuzzer.html. (accessed: 2023.02.23).

[38] Yjs team. Shared data types for building collaborative software. https:
//github.com/yjs/yjs. (accessed: 2023.02.23).

[39] Romain Vaillant, Dimitrios Vasilas, Marc Shapiro, and Thuy Linh
Nguyen. Crdts for truly concurrent file systems. In Proceedings of the
13th ACM Workshop on Hot Topics in Storage and File Systems, Hot-
Storage ’21, page 35–41, New York, NY, USA, 2021. Association for
Computing Machinery.

[40] Albert van der Linde, Pedro Fouto, João Leitão, Nuno Preguiça, San-
tiago Castiñeira, and Annette Bieniusa. Legion: Enriching internet
services with peer-to-peer interactions. In Proceedings of the 26th
International Conference on World Wide Web, WWW ’17, page 283–292,
Republic and Canton of Geneva, CHE, 2017. International World Wide
Web Conferences Steering Committee.

[41] Peter van Hardenberg. Automerge 2.0. https://automerge.org/blog/
automerge-2/. (accessed: 2023.02.23).

[42] Elena Yanakieva, Michael Youssef, Ahmad Hussein Rezae, and Annette
Bieniusa. Access control conflict resolution in distributed file systems
using crdts. In Proceedings of the 8thWorkshop on Principles and Practice
of Consistency for Distributed Data, PaPoC ’21, New York, NY, USA,
2021. Association for Computing Machinery.

50

https://aflplus.plus/
https://logux.io/
https://github.com/aredington/schism
https://github.com/aredington/schism
https://github.com/cachapa/crdt
https://github.com/cachapa/crdt
https://m-ld.org/
https://github.com/kappa-db/kappa-core
https://github.com/kappa-db/kappa-core
https://github.com/amark/gun
https://doc.akka.io/docs/akka/2.6.3/typed/distributed-data.html#replicated-data-types
https://doc.akka.io/docs/akka/2.6.3/typed/distributed-data.html#replicated-data-types
http://replicated.cc/
https://github.com/yorkie-team/yorkie
https://github.com/yorkie-team/yorkie
https://josephg.com/blog/crdts-go-brrr
https://josephg.com/blog/crdts-go-brrr
https://github.com/josephg/diamond-types
https://github.com/josephg/diamond-types
https://github.com/automerge/automerge/pull/531
https://github.com/automerge/automerge/pull/531
https://github.com/stateright/stateright/pull/30
https://github.com/stateright/stateright/pull/30
https://github.com/stateright/stateright/pull/38
https://github.com/stateright/stateright/pull/38
https://github.com/stateright/stateright/pull/42
https://github.com/stateright/stateright/pull/42
https://github.com/automerge/automerge-classic/issues/4
https://github.com/automerge/automerge-classic/issues/4
https://martin.kleppmann.com/2020/07/06/crdt-hard-parts-hydra.html
https://martin.kleppmann.com/2020/07/06/crdt-hard-parts-hydra.html
https://lcamtuf.coredump.cx/afl/
https://github.com/automerge/automerge-classic/issues/342
https://github.com/automerge/automerge-classic/issues/342
https://github.com/stateright/stateright
https://github.com/automerge/automerge-classic/issues/331
https://github.com/automerge/automerge-classic/issues/331
https://github.com/automerge/automerge
https://github.com/automerge/automerge
https://www.llvm.org/docs/LibFuzzer.html
https://github.com/yjs/yjs
https://github.com/yjs/yjs
https://automerge.org/blog/automerge-2/
https://automerge.org/blog/automerge-2/

	Abstract
	1 Introduction
	2 Automerge Model Checker
	3 Checking Automerge applications
	4 Dynamically exploring models
	5 Checking Automerge
	6 Related work
	7 Conclusions
	Acknowledgments
	References

